向量组`alpha_1, alpha_2, alpha_3`的秩为`2`,则向量组`eta _1 = alpha _1 + alpha _2, eta _2 = alpha _2 + alpha _3, eta _3 = alpha _3 + alpha _1`的秩为( )
举一反三
- 设`n\times 3`的矩阵`A`的秩为3,则下列向量组线性无关的是( ) A: `\alpha _1 + \alpha _2,\alpha _2 + \alpha _3,\alpha _3 + \alpha _1`; B: `\alpha _2 - \alpha _1,\alpha _3 - \alpha _2,\alpha _1 - \alpha _3`; C: `\alpha _1 + \alpha _2 + \alpha _3,\alpha _3 - \alpha _2, - \alpha _1 - 2\alpha _3`; D: `2\alpha _2 - \alpha _1,2\alpha _3 - \alpha _2,\alpha _1 - \alpha _3`.
- 设有向量组`\alpha _1, \alpha _2, \alpha _3, \alpha _4`,则向量组`\alpha _1 + \alpha _2,\alpha _2 + \alpha _3,\alpha _3 + \alpha _4,\alpha _4 + \alpha _1`( )
- 设向量组\( {\alpha _1},{\alpha _2},{\alpha _3} \)线性无关,则下列向量组中线性无关的是( ) A: \( {\alpha _1}{\rm{ + }}{\alpha _2},{\alpha _2}{\rm{ + }}{\alpha _3},{\alpha _3} - {\alpha _1} \) B: \( {\alpha _1}{\rm{ + }}{\alpha _2},{\alpha _2}{\rm{ + }}{\alpha _3},{\alpha _1}{\rm{ + 2}}{\alpha _2}{\rm{ + }}{\alpha _3} \) C: \( {\alpha _1}{\rm{ + }}2{\alpha _2},2{\alpha _2}{\rm{ + }}3{\alpha _3},3{\alpha _3}{\rm{ + }}{\alpha _1} \) D: \( {\alpha _1}{\rm{ + }}{\alpha _2}{\rm{ + }}{\alpha _3},2{\alpha _1} - 3{\alpha _2}{\rm{ + }}22{\alpha _3},3{\alpha _1}{\rm{ + 5}}{\alpha _2} - 5{\alpha _3} \)
- 设有向量组`\alpha _1, \alpha _2, \alpha _3, \alpha _4`,则向量组`\alpha _1 + \alpha _2,\alpha _2 + \alpha _3,\alpha _3 + \alpha _4,\alpha _4 + \alpha _1`( ) A: 线性相关; B: 线性无关; C: 可能线性无关; D: 以上都不对。
- 已知`\ alpha _1,alpha _2,alpha _3,beta , gamma `均为4维列向量,且`\| gamma ,alpha _1,alpha _2,alpha _3 | = n,| alpha _1,beta + gamma ,alpha _2,alpha _3| = m`,则`\| alpha _1,alpha _2,alpha _3,3beta |` ( ) </p></p>