• 2022-06-09
    用[tex=2.214x1.286]coNwv2qnzXeMtIItli6H5g==[/tex]的网格计算应力,题[tex=2.214x1.286]jSxWig/CMP8Mw9jWBrMn8w==[/tex]图所示。[img=226x232]17cf0a725cdcf49.png[/img]
  • (1)考虑对称性,取梁左侧中点[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为基点,网格及结点划分如解[tex=2.214x1.286]PVvUvFeEMqxZyrTbDBPZkg==[/tex]图所示。取[tex=11.786x2.786]L8Jy167Xlo5rtvV1VM2vo7xPoD42vXcFxGS7cW1x+Eqvztb9jZ92c+ZiXyQO7zLiwPYF/hXJltN716ox4DxTtf+1B+Q2G4L141x/or2j3n4XAjUs8btlQBm7it6kDtdwSRKsPr83Lx/hawJcR496ObI7vwW2Jh4p/2PoMMYFomk=[/tex],计算边界上所有各结点处的[tex=0.714x1.286]BCQv5QtA/J1/m5EIhZjn9w==[/tex]值以及必需的[tex=1.5x2.429]aoAtmkWSHYklGULM9bBrEmJQJK3XkzLN9Sp5lbNGhUZeduSbJhjIYIl3ve/IIMnG[/tex][br][/br]值和[tex=1.5x2.643]aoAtmkWSHYklGULM9bBrEkuy47CwKodrEhxpZrbI+op44xyu6aB0s4TewbtCPDfL[/tex]值,列表如下:[img=504x67]17cf0a87df4ebe4.png[/img][img=508x110]17cf0a8b01238a0.png[/img](2)将边界外一行各个虚结点处的[tex=0.786x1.0]6PY6yK2LNa2gfvFajBEf7g==[/tex]值([tex=1.143x1.214]dE4dOsGPH8WbU3UoOrk33g==[/tex]至[tex=1.429x1.214]8wdqFDhNwOvlTC5sfjC1tg==[/tex])用边界内一行各结点处的[tex=0.786x1.0]6PY6yK2LNa2gfvFajBEf7g==[/tex]值表示,得到[tex=23.714x6.929]Flqc1ZdhdYSdu+iBHpEhcAC4PCbbq3vzzSXojc3blTvQug2tnyeCTGqA3qYzUu4AxdnUyxmFle0WHRVFZN9t1Ax13PO1wqfFiIi3eyVrcjAH46l357hchJo7Z/i3vocLl78/EDUI7kbWyNqHOnm70R/ByoP5jeeHg9HgrPcDiu4KTGNmbF0DSTvNhlpC0Trg5UEAyldCp0afnUbzr8D6qyLCicBlPnBpFSZ82RLHZrAREuYSavPizxhSVom8Ft74cfl9gi2AOwnieQHagmJSfd3+yag8fLPC1ill6nW92JmKpQZv7PUvwqylMcKBQy7gldf2Xu5TgezISIhSIBxcMcxjQe2wEJTKoia+9T2i/YUxl4EfVgd54xUf0Xbxz4ZeuhSLRlL8XD5rK7owq5Sk3fRxTlLieLjfDUqT8VVax9JMjo0CA23S134JTo2dza+x25gUfWqZ/BW41CuU6L3GxurdH4D7Nl5UJW7+iin9N8zC+x+Y0CxPv5Bg/uFnII4phyrCEEDhQ5+nMYYSpb+qJs/s1t0oSEygSBD//tHseUVGOwx8qtpv3Kk368NPOg2uetcUCBTp8FmUkBG+XrXyPA==[/tex](3)对边界内的各结点建立差分方程。对结点[tex=0.5x1.286]7rcVY9u25Rg5EdwYVzpzgg==[/tex],注意对称性,可得[tex=28.143x1.357]m4vWK4X/ABr1ODdX6Hq5AkI0vPVca3iDlTkzhT66gr50kQdS9CGu3aVgXUawIBLyK0J6R6uf39Rhe5gWq+tHZGngIfKQvp8CONa8rCf71j+Yf4/nOlCZ64cO64uk6/6UPf97t0Xgov1X+Qs0qndBXjN628hPXhN3Sqc51Ed9P7y0LEHxHEPvvaHwvZOZxDWx[/tex]将上表中[tex=6.214x1.214]DeMdwa3xl3oeA4nuurmQeai00b7tpdtWGBOx1xyUshtiTB3Zi4ZWiy0Sd9mZJJAb[/tex]的已知值代人,得到[tex=19.929x2.357]8dk0LU7xdMWBMQ9N1rU1eSY7d7ykDiVWoUvQajYHQl3SiNk0VGS4fzxOFC0Ass5CiYemoDJBbKq93MbZwRWKTu7a8SJhhLV4uKBwAafRNWD4PXNxbBi1t7j+Qz4DRCjY[/tex]同理可得其它结点的差分方程[tex=20.143x11.143]fy40S5epBmhkdH8/yL0nmCRyDcFET8aJmlb1+/izk39bgMIkFZmMZVLNV6f45CdTHlFIeV54dPvg21wbGsMEOZebBa5l7DRLDwM+pdBCoHeqAHr70C4eoUiEKGQHWbVhfZklyQ1PwsGOGoMegE+xk5gK1x5tY0MXF3YsLiyCex44tkEV+SVC2YWzA82vrGD2UI5uuepn1x/8Sp1Y7YLKDyFoB9/rGoElW4g9104kuDF1lPG8y21630o3abLZb4cr/c0VmaHAlO0Mk99h2eyesmV8H/Qv/02slHTO31rcsQS9CzLId7TY0UOPTh0t571ZuSW6ILvxstGjkquj+oR5b6BGNpHi+ZshH4uL7QbtNrIUPmqJdJCtTNUVZ/NQND/RX0OT+SSaP4ws2qjMWUbb1jV7uj3UcGFXXwabxJyN7xORddAvmF9r6F5eBS5TrlwKC8mpy5l1h9gD28BEjl1s+MDUIQ+CswTG5gDd32ArYo+o1F+9zIoDprcGoxeAJObqkIwu5UJwuqhYBRU9vT4W1v2de5il6QFU8o3n36fzS6An7Aed33RPtO2wPOs6sNQ3[/tex]联立方程式[tex=4.214x1.286]t0xaRw1edD/rgpJ6FKu2Ryqj+qE+Z0+3A29+D3n36nw=[/tex]求解,得到(以[tex=1.429x1.286]kt2HLbs1aBknMCDA9igE+w==[/tex]为单位)[tex=20.0x2.929]CeOWlpLvH8Qhk/RmfIvBHaR3Ht1zUI+R1m4RznHS2Bx8qH5eRrSe0m5dgzzxzKArfotKRJA82uF8jKjfVAK+ph0FuEbAVTWxhehaadHL5d2Qk7aD8dTpK0fXAvmiJ52uIpZAKQSZ45JUb+1XB6i8/Q2HMirrDa/wiwH7DtnjgFEfTNdWa1SgmaMNgJJwQDsXH+kecAOzNeeo1Fg0Ov+yJg==[/tex](4)计算边界外一行各结点处的[tex=0.714x1.286]BCQv5QtA/J1/m5EIhZjn9w==[/tex]值(以 [tex=1.429x1.286]kt2HLbs1aBknMCDA9igE+w==[/tex]为单位)。[tex=26.714x4.214]ifE9NWj3X6IpRVSt3T5ITpkjZR7jjUYAXmguSHbvIYv3JBtna1zYKs1E1SHko3s1xlE0ep/iagP7o/Z9IzCo5sri4DNwDbzrr0Lhmn9DrKOpC1cv7UcSJBeUDNIolk0Z0wXi0KYPlhZbQGKhHaKkAgrA+yKDdBroRp2EJmCwGZmLWOcp0GOE0fwCNyDnG7pG2viWgGmqx15npNchaU/Uxvpt3ExR3ELZ7txMlTcuYwHM8oIT9qyJkLP89YnCCyEwMLG1FeVGvzTdH1F665FShl/VSmiXRv8PmAB6be0Fi37T9/drB9SubyUYQfyblHjONy9gF6oI3jc//Rky5YQT+aAYwEc2FLwgAH1UUU6obF/voGhqHrbRkgy8WQL2PZ8s[/tex](4)计算应力[tex=16.5x14.571]J8bAdTDxkMFjgSDNoSdp0v9buLXQWFsJDmXxEqn51L2TJQtpmNqZHhPZblBn1SJQrRbMaZ35LqHHA+MGuBv2jBqHW/pe+3z7rhNLEoJ//DneUORPUaOUbSBt7B3jww9sO5I2fBMtWviN9FynyBjWE8i+YTjEoXYm2oUEQUIaWGxRbWm6i/TOw2bRd4Fimi+FsHcWznsaDd2GRZSK6M1sTL9MURK4u+hiWqlHtSw56hiXJ9L5aFoyB6VzKxsICT/nqvwcI53uF6RUK46/lzrZpHKyuCgebnam6DxH/pxnFzS4LIbCQGr+3PKupBE2C4qEDZn2wzc1KjGZGCK+MbE/ZMeGiKvjUOnRce5qXmTn3/X6SIYGHbB/VRV212xUYgqK6qNpxzAcw/EeiZh3GksbobQuRQ2p+khyqMK0F+Zdt2Sl0SzltnJkmGObZpGwXoK9R7IxFcwHMjfIDDD8SvoaWl0iYVClU7NJ5XEyRVzzZ3roUlYRVQGSzhuPkPZjkxuykSnd0JR0tKlrDqgnqrEhJPeO+bAQVNpdBbklXMFEhQjS6muOe4jwULqE6xbPYrltbPZdwONWOrh10RiRox3qBUQeSSo9FX+pieyA4MTSBrbmX14KKKbn5ZAyKcCjvGFYI7gj60kr1oauxBEfeXvgR8ybeyMc5yobEzHM1RA3jLdmtd517U3Bzj6gV4JVyv8IujzYkOcO4iFJ+FjwoHWoB1MNjJPOojtBAj7q1x8IVgas9CigP8TC7lYYT61gocZAp1ycrCPTcdK/yF2sKnNI6pajFMJuFLsy9RaJxQ9EVSo/v7ET6at4DK2N8xOpltEy/asS4Uua9YUYyUpOkTsvVxgn67IFgelFt7glWpV53TWeobO7AcvtbZOyexpeQ7jP[/tex]

    内容

    • 0

      试考察应力函数[tex=6.857x2.143]9K1wx+bG/l5KpPJeNigHTFY+qwKc3SUnVl85ABCiSV7QE9RV8BlPe3xPTgyC8dsh[/tex],能解决题[tex=2.214x1.286]8iOXmNOn8ScF7xkFouHNwQ==[/tex]图所示弹性体的何种受力问题?[img=188x193]17ceff85a855ee6.png[/img]

    • 1

      试列出题[tex=2.214x1.286]TobZqGkfqyh176sgbfKZbw==[/tex]图([tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]),题[tex=2.214x1.286]TobZqGkfqyh176sgbfKZbw==[/tex]图([tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex])所示问题的全部边界条件。在其端部边界上,应用圣维南原理列出三个积分的应力边界条件。[img=550x270]17ceb5945fb5dbc.png[/img]

    • 2

      试求如题[tex=2.214x1.286]s7nw/7sRssvwI7HTyUnK2g==[/tex]图所示结构的结点位移和应力,取[tex=4.857x1.214]kzVPqH8X0g8mn1nuJaYb4g==[/tex]。[img=242x240]17cf0fdec39aaf3.png[/img]

    • 3

      已知复信号[tex=1.643x1.286]Bqkja31JOUMtb2p8QeCxmg==[/tex]x的频谱如题[tex=2.214x1.286]YDeu0ERYIQnX0N3M4Od0yA==[/tex]图所示,试画出该信号[tex=0.5x1.286]w9szX5MVVkKzPTQtDmrYaA==[/tex]倍抽取后的频谱并讨论所得到的结果。[img=512x157]17a7789a7dd052f.png[/img]

    • 4

      试分析图[tex=2.214x1.286]d+qeZ+STHuDvbya3ucJi1g==[/tex]所示电路的逻辑功能。[img=569x265]17d46552559a963.png[/img]