已知为的DFT,若为实数序列,则为 序列;若为共轭奇对称序列,则为 序列。()http://edu-image.nosdn.127.net/2B95920BBB41C147CD2111898B530C3C.png?imageView&thumbnail=890x0&quality=100http://edu-image.nosdn.127.net/F17B4E48F5DCA4E98032614BCE810896.png?imageView&thumbnail=890x0&quality=100http://edu-image.nosdn.127.net/FD30CD9652C9C32517B76378DAC36A9C.png?imageView&thumbnail=890x0&quality=100http://edu-image.nosdn.127.net/E698FC70FC599C17EE1E79D4128CE458.png?imageView&thumbnail=890x0&quality=100http://edu-image.nosdn.127.net/4B457EA86A75BEB7C241AC5D0BF682E2.png?imageView&thumbnail=890x0&quality=100http://edu-image.nosdn.127.net/FD4B8BC6BC00BFFD37FB90DA9B7C8F4B.png?imageView&thumbnail=890x0&quality=100
举一反三
- http://edu-image.nosdn.127.net/EC9D7EA61F1EFFB86E66B5E0259BCBBD.png?imageView&thumbnail=890x0&quality=100http://edu-image.nosdn.127.net/13F84D3AF06E795D4BF13D9C8B0AD44F.png?imageView&thumbnail=890x0&quality=100
- 中国大学MOOC: http://edu-image.nosdn.127.net/8E989C885179CAD3E88F4ED14999CEF9.jpg?imageView&thumbnail=890x0&quality=100http://edu-image.nosdn.127.net/270D935AC13F8AC30775CB323882970C.jpg?imageView&thumbnail=890x0&quality=100http://edu-image.nosdn.127.net/E8F4932FC8C534FE91D7CCBE9744E7AD.jpg?imageView&thumbnail=890x0&quality=100
- 中国大学MOOC:"下图所示工具为( )。http://edu-image.nosdn.127.net/D6BFA044A165F7787DDF229A39C5C236.jpg?imageView&thumbnail=890x0&quality=100http://edu-image.nosdn.127.net/2F463E8BC7003C7A6DE10AD41DB2F19E.jpg?imageView&thumbnail=890x0&quality=100http://edu-image.nosdn.127.net/A703FA1F4FAFAE1A1224262AF1D87971.jpg?imageView&thumbnail=890x0&quality=100";
- 中国大学MOOC: http://edu-image.nosdn.127.net/8E989C885179CAD3E88F4ED14999CEF9.jpg?imageView&thumbnail=890x0&quality=100http://edu-image.nosdn.127.net/270D935AC13F8AC30775CB323882970C.jpg?imageView&thumbnail=890x0&quality=100
- 中国大学MOOC: http://edu-image.nosdn.127.net/7D51EA94B193D097167CC61B91F23395.png?imageView&thumbnail=890x0&quality=100http://edu-image.nosdn.127.net/46BE8EC842C20D2566C34496757F7637.png?imageView&thumbnail=890x0&quality=100