设集合[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex]和[tex=0.857x1.214]ChdusW5rAupjge6v/DGHRA==[/tex],且[tex=9.0x1.286]UAF5zept/c62KMXELvSGGfAwG2qylwDgM7o3RINViA7TqPJDrBVi4FZZoSvYhlYI[/tex]证明:[tex=7.857x2.0]ml3J+0hEclGfkoBj6hNrTkcUsziUVX4exOX2EeHgRFEUQEqpiFbezmamaoXwQi/j[/tex]
举一反三
- 设集合[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex]和[tex=0.857x1.214]ChdusW5rAupjge6v/DGHRA==[/tex],且[tex=9.0x1.286]UAF5zept/c62KMXELvSGGfAwG2qylwDgM7o3RINViA7TqPJDrBVi4FZZoSvYhlYI[/tex]证明:[tex=12.071x1.357]Y5IiK8bdaDJGfIwXCUX7R+ai677sJrHfojsrCo44sxQa1ewkG9Ld67z46GhxKM5x4OQU6RpwKU97q00GHnSsTyB2cV6HJ+TgOtJRqh0Puco=[/tex]
- 试证明[tex=3.0x1.214]IUHrYHrM08MGOPGYrhrf7lrE2bY1p1ex4nRajltli6M=[/tex],[tex=0.857x1.214]ChdusW5rAupjge6v/DGHRA==[/tex]逻辑蕴含[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex]
- 如图,在曲线[tex=2.286x1.429]qOD0bBSg/KT4jxyhefRIrw==[/tex]上取一点[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex],过[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex]的切线与该曲线交于[tex=0.857x1.214]ChdusW5rAupjge6v/DGHRA==[/tex],证明:曲线在[tex=0.857x1.214]ChdusW5rAupjge6v/DGHRA==[/tex]处的切线斜率恰好是在[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex]处切线斜率的四倍。[img=124x125]1772d9b8d57eb84.png[/img]
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 下面的断言如果是真的证明它们,如果是假的,找出[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex]和[tex=0.857x1.214]ChdusW5rAupjge6v/DGHRA==[/tex]的解释以证明公式是假。[tex=16.786x1.357]ZqfpriyvqXhpQ5nxOR3QDZ0hsuFVeVLuMJnKeuFIKXbPhb3MrMp5xUtSdcC5h02HjkaH2u7Z9oQ0yNPwZ/Qw7UPFzCIYtxSZg8lBvTiALP1V80oAGFHuHYGE+pynwCjN[/tex]