图示应力状态,按第三强度理论校核,强度条件为( )。[img=228x172]180335df4ee991b.png[/img]
A: τxy≤ [σ]
B: √2τxy≤[σ]
C: -√2τxy≤[σ]
D: 2τxy≤[σ]
A: τxy≤ [σ]
B: √2τxy≤[σ]
C: -√2τxy≤[σ]
D: 2τxy≤[σ]
举一反三
- 分解因式()x()3()y()-()2()x()2()y()2()+()xy()3()正确的是A.()xy()(()x()+()y())()2()B.()xy()(()x()2()﹣()2()xy()+()y()2())()C.()xy()(()x()2()+2()xy()﹣()y()2())()D.()xy()(()x()﹣()y())()2
- 设(X,Y)的联合密度为[img=246x61]17de89815546a18.png[/img],则EY=_____, E(XY)=_____. A: EY=4/5, E(XY)=7/5 B: EY=7/5, E(XY)=2/5 C: EY=3/5, E(XY)=1/2 D: EY=2/3, E(XY)=2/5
- 应力圆的半径是( )。 A: (σx +σy)/2 B: (σx -σy)/2 C: τxy D: sqrt( [(σx -σy)/2]^2 + τxy^2 )
- 设\(z = u{e^v}\),\(u = x + y\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}(1 + xy + {y^2})\) B: \({e^{xy}}(1 + xy + {y^3})\) C: \({e^{xy}}(x+ xy + {y^2})\) D: \({e^{xy}}(y+ xy + {y^2})\)
- 在下图中,已知斜截面上无应力,该x、y面上的应力分量满足关系 ( )[img=363x330]1803be4a6959759.png[/img] A: σx>σy, τyx>τxy B: σx<σy, τxy=τxy C: σx>σy, τyx=τxy D: σx<σy, τyx>τxy