设f(x)与g(x)都是定义在区间[x1,x2]上的函数,若对任意x∈[x1,x2],都有(f(x)+g(x))2≤2,则称f(x)和g(x)为“2度相关函数”.若函数f(x)与函数g(x)=x+2在[1,2]上为“2度相关函数”,则函数f(x)的解析式可以为( )A.f(x)=x2+2x+1B.f(x)=-3x+2C.f(x)=-x2+2x-4D.f(x)=x+lnx-4
举一反三
- 设函数f(x)与g(x)在(a,b)上可导,考虑下列叙述: (1)若f(x)>g(x).则f"(x)>g’(x);(2)若f"(x)>g’(x),则f(x)>g(x).则 ( ) A: (1),(2)都正确 B: (1),(2)都不正确 C: (1)正确,但(2)不正确 D: (2)正确,但(1)不正确
- 下列各组中,函数f(x)与g(x)表示同一函数的一组是[ ] A: f(x)=x0与g(x)=1 B: f(x)=x与g(x)=x2x C: f(x)=x2与g(x)=(x-1)2 D: f(x)=(x)2x与g(x)=x(x)2
- 下列函数相等的是( )。 A: \( f(x) = \ln {x^2},g(x) = 2\ln x \) B: \( f(x) = x,g(x) = \sqrt { { x^2}} \) C: \( f(x) = \sqrt { { x^2}} ,g(x) = \left| x \right| \) D: \( f(x) = { { {x^2} - 1} \over {x - 1}},g(x) = x + 1 \)
- 下列函数f(x)与g(x)表示同一函数的是( ) A: f(x)=x0与g(x)=1 B: f(x)=x与g(x)=x2x C: f(x)=x2与g(x)=(x-1)2 D: f(x)=(x)2x与g(x)=x(x)2
- 下列各选项中,函数相同的是( )。 A: \(<br/>f(x) = \ln {x^2},g(x) = 2\ln x \) B: \(<br/>f(x) = x,g(x) = \sqrt { { x^2}} \) C: \(<br/>f(x) = \sqrt { { x^2}} ,g(x) = \left| x \right| \) D: \(<br/>f(x) = { { {x^2} - 1} \over {x - 1}},g(x) = x + 1 \)