描绘函数[tex=4.429x1.5]o5408zpJDlaY261Nu6T1clQHp2eJO44dtkRiTtjPTnE=[/tex]的图形。
解:(1) 所给函数[tex=4.429x1.5]o5408zpJDlaY261Nu6T1clQHp2eJO44dtkRiTtjPTnE=[/tex]的定义域为[tex=4.643x1.286]kWKrbE2Y4JZYxfdbsdRqUvt8T2qNtBnhIme8hhtrgR8=[/tex],而[tex=8.643x1.571]XMBTiHhPJEtrGic/dM1r0hpLeNbFfvgjh9YIjhM1vxcJsX7GI3DCPEOgOVPGPZUNC9WbqRdAszn+5p8D8fJD6w==[/tex],[tex=12.0x1.643]1rZQzP9GzTuJ2Uik4bhM+LltS2RPB79MkkZmH0a7F7ZB8WrMztN3/zGKur5V/iS5loZ5gxM5AS+Kl/wLzJIGvjiAHSOvne7kV5NjCGdPkjc=[/tex]。(2) 令[tex=2.571x1.286]cIcAGLCbWpT5vpeiB6BdKVEXMySzhw2VjsXRyMdnHCc=[/tex],得驻点[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex],令 [tex=2.786x1.286]Ei2PZQl92La73hUrygebc2+D1m3XSs3rxM2JO1NI0o4=[/tex],得[tex=5.0x2.214]Lu5Y9z4AxMRJlnfaLBE7iZthDlT3Sa+FinQMrbLm44A=[/tex], [tex=5.0x2.214]BPpVOEj0K6sdGz/vHDyty+eR34XDsqDDutZsWZOKFT4=[/tex],根据上述点将区间[tex=4.643x1.286]kWKrbE2Y4JZYxfdbsdRqUvt8T2qNtBnhIme8hhtrgR8=[/tex]分成四个部分区间:[tex=6.5x2.929]MPd9ppr9Ni6p6wgLjvdf3zoOoDvmVEyVes+DSEfE7KkYKJrmSlLjhbOdKSXv5gWs[/tex],[tex=5.071x2.929]aL95eiCzpH0Q1Ei0PPQUTAosQDxN8Gcw9B5twJG8HpGcnoHyfMA/vzB3qSeU0J6D[/tex],[tex=5.071x2.929]SLQ6KG1KmTcfO5adstOGeaeD1e0Bt6OmouxEySemHMD4SSsjYX6v0nGEhX+MebWl[/tex],[tex=6.5x2.929]Ixopq8mKLv6IScsrdFuCz2rDI+Xrp2PbB8Mmr8bOsTsGD55VCYo10GoJ3eCljlOr[/tex]。(3) 在各部分区间内[tex=2.143x1.286]FKq9v1pXcOtjy1Cl2h+pXv4qvrtr57gpoaVePO4m860=[/tex]及[tex=2.357x1.286]YRReUQzIsdcIgxj5peM19DyTRMpfmVCkoDfm0gt/rIw=[/tex]的符号,相应曲线弧的升降及凹凸以及拐点等如下表:[img=817x209]176f99739a68ac6.png[/img](4) 由[tex=6.429x2.0]MqOfsQLAB/zeVSdv1WggGGNA1nanMzinW5TtkpbVmmWNp0SEmUHOK1+ylrOuL+geFGNM/R/PI3ypmwutOaCTMg==[/tex]知图形有一条水平渐近线[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex],图形无铅直渐近线及斜渐近线。(5) 由[tex=3.571x1.286]w1MH71jHcYiNBo5YT0UMjQ==[/tex], [tex=7.714x3.357]dRr4eK73i1SCiVeaWQ/nbe3YuWcNSqpghGVOzueKqlH25/7uUOYeSn/CVJNtMKhqb7uEFygrRxbrWtkiIphgf81eQmXnWA3Jznf6FBdV9UI=[/tex], [tex=3.929x1.5]t00apSZjHXw9rIT4phIOITroLOlEGwI0ZKTz529alDc=[/tex], [tex=7.714x3.357]so5ny/0u9Eh8kkq+rdy4dKrYUxZ7ALKPXne0BJW5AzD2YUMoDbxGbcK+1JrXKO8WAWzVB9IgQRlDGsg6POr7UUuzNJl3gWHqtKHQtahlbAc=[/tex], 得图形上的点[tex=2.143x1.286]OGI1nc8WH38NKUnYUafisA==[/tex],[tex=6.714x3.357]cn6NSLg2RASQ/kGBharBBLRrSrHSnWSFUg1cceX+eW+4tQKrBWuQZViU5JlGo6M2gOnuPa8EAUzKtFhbNFBBTZYK3rFHkXsOEUoihsu12xQ=[/tex],[tex=3.286x1.571]wdkDaOOlDfZEsWDphWkjbnsPN2BcY0BOK1u1k3/17DP1uthGhcReVnJYX3oCM1uL[/tex],[tex=6.714x3.357]TbjgVBSNtvigBgBoYvjL8rSW5zdU5+SKU9CZDwjC2iK50Nz3RJD2+5j7GV8TIWeGc2RlO5Jrut4QGTWMrgo+lu+hPr4QSkI+kkSffp8glpo=[/tex]。(6) 作图如图 3-11。[img=492x180]176f99a62074962.png[/img]
举一反三
- 利用[tex=2.786x1.429]GAL3wqj4JSMLlcvcfbE2gA==[/tex]的图形,作出下列函数的图形:(1)[tex=5.286x1.5]Dma31wKsiDl58eopT06Vwg==[/tex];(2)[tex=3.571x1.429]QmySTRa3WdfObQrTHqb9Yg==[/tex].
- 利用[tex=2.786x1.429]8E7zaDCibVcB0xPC0P/7QQ==[/tex]的图形,作出下列函数的图形:(1)[tex=4.571x1.429]5tsEv8+KvmSF7Tw5ckq00w==[/tex];(2)[tex=5.286x1.5]GPRR73evmTM2Nrg0DoFxnQ==[/tex].
- 求下列函数的导函数:(1) [tex=5.0x2.357]X/CieCDGJ7iPQ3YFWuscHxHrcIE/dPFa9tFyiJXze8A=[/tex](2)[tex=6.643x1.714]Oj74y/L+OxY81QME5JWMcl+7PZ2FGQswwvjgVhjq1Dmb6dBU0oAjZBW7eFBVjqo6[/tex]
- 已知函数[tex=6.786x2.357]zJ0fiAUmkK9JgcJtlOlNv9zhiYp0GUhvvG3qP32SZRWN009W6ac/joAgnZe+2LR0[/tex],求(1) 函数单调区间,函数极值;(2) 函数图形的凹凸区间,函数图形的拐点。
- 用 [tex=3.0x1.214]5KnWX2KBowCWWYe9f0T9EQ==[/tex]的图形作下列函数的图形.(1) [tex=3.786x1.214]c2ch6ydxoNhDqn7NatkBSQ==[/tex](2) [tex=3.357x1.429]7wEv65DzqKNLFZniP1b7kA==[/tex];(3) [tex=4.143x1.357]Xsaqm/uZ44pHnSDUKq9r8GOchnZCATdfavCcpgD6dnQ=[/tex](4) [tex=3.214x2.357]Ni2sUmew9iBBitOX5zzinxXHpJ0O3e1LRY4mG38ogEc=[/tex];
内容
- 0
指出下列各方程表示哪种曲面:(6)[tex=4.429x1.5]2mys/cuyt7XW3h5WWIimnA==[/tex]
- 1
全面讨论下列函数的形态,并描绘它们的图形:[tex=4.714x2.214]xlzHCpvgwOFn+1W4qVmuTX6GQfyQUqDveUnIidta1EE=[/tex]
- 2
全面讨论下列函数的形态,并描绘它们的图形:[tex=4.714x2.786]bXiMPmLSpmaG5tB7nccBQUtiFlEsQBGwAdKiEHHkzVs=[/tex]
- 3
全面讨论下列函数的形态,并描绘它们的图形:[tex=4.643x2.429]MQHEiCH4r5iM0YG1qfmPNOq8hTCIiT0JY5smaPRm7HY=[/tex]
- 4
已知函数[tex=5.429x2.357]VUCuHsLODCrYlIkQNU33mjuRaj6UECx5ucDf79cnIAE=[/tex],求(1)函数的增减区间及极值;(2)函数图形的凹凸区间及拐点;(3)函数图形的渐近线。