The coordinates of a vector relative to a basis in a vector space is unique.
举一反三
- If Vis a subspace of[img=22x19]1803b6a69db62a6.png[/img], then the coordinate vector of any vector in V relative to a basis also in[img=22x19]1803b6a69db62a6.png[/img].
- Any subset of a vector space V which contains the zero vector is a subspace of V.
- 1803b6a65bf4114.pngis a basis for a vector space V. [s[img=81x51]1803b6a6653a4f6.png[/img]. Which one is the vector x? A: [img=42x51]1803b6a66d43e0e.png[/img] B: [img=28x51]1803b6a6750b972.png[/img] C: [img=28x51]1803b6a67d4b84f.png[/img] D: [img=42x51]1803b6a685bca75.png[/img]
- A mapping [img=100x19]1803b6a8dc66bb9.png[/img] is one-to-one if each vector in [img=22x19]1803b6a8e4ff643.png[/img] mapps onto a unique vector in [img=25x19]1803b6a8ed84492.png[/img].
- If F is a vector field, then divF is a vector field.