设 [tex=5.214x1.286]iYGkgQRAnC/idv3KHcGquLaDPNM7b3Lc1AQ0UnMXq+A=[/tex], 试证明 [tex=7.214x1.286]wm2n+7PoyRPMnTMj3etFncYVm14t3Zf85y3C0lYl5Tq+iXOJIoSZOrf8F3xl25sw[/tex].
举一反三
- 设X,Y为两个随机变量,且P{X ³0,Y ³ 0} = 3/7 , P{X ³ 0} = P{ Y ³ 0} = 4/7 ,则P{max(X, Y) ³ 0} = ( ). A: 1/7 B: 3/7 C: 4/7 D: 5/7
- 【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=0 (3) 1/8
- intx=5,y=8,z=7;表达式z=!(x>y)||(x=1,y=3)计算后的结果 A: x=1,y=3,z=1 B: x=1,y=3,z=0 C: x=5,y=8,z=0 D: x=5,y=8,z=1
- 微分方程\(2y''+5y'=5x^2-2x-1\)的通解是( )。 A: \(y=C_1+C_2e^{-\frac{5}{2}x}+\frac{1}{3}x^3-\frac{3}{5}x^2+\frac{7}{25}x\) B: \(y=C_1+C_2e^{-\frac{5}{2}x}+\frac{1}{3}x^3-\frac{3}{5}x^2\) C: \(y=C_1+C_2e^{-\frac{5}{2}x}+\frac{1}{3}x^3+\frac{7}{25}x\) D: \(y=C_1+C_2e^{-\frac{5}{2}x}-\frac{3}{5}x^2+\frac{7}{25}x\)
- 阅读下面的java语言代码,输出结果是( )。 int x, y = 1, z=0; if( z < 0 ) x= 3; else if ( y == 0 ) x= 5; else x= 7; System.out.println(x+”,”+ y); A: 7, 0 B: 7, 1 C: 3, 3 D: 以上都不正确