对于输入空间中的非线性分类问题,可以通过非线性变换将它转化为某个高维特征空间中的线性分类问题,然后在高维特征空间中学习 线性SVM。
举一反三
- 对于输入空间中的非线性分类问题,可以通过非线性变换将它转化为某个高维特征空间中的线性分类问题,然后在高维特征空间中学习 线性SVM。 A: 正确 B: 错误
- 方法是通过一个非线性映射P,把样本空间映射到一个高维乃至无穷维的特征空间中,使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性可分的问题。 A: 支持向量机 B: 机器学习 C: 遗传算法 D: 关联分析
- 在线性空间中,定义,则不是线性空间中的一个线性变换。c0c7fb9c26117de4098bfb626f2c6e58.png537ad559a55487ae6c7bb823160ae476.pngc01eb59385c24dbac2b5a9d048aae3f1.png4e8be89b15dabe9f59911a861fdddfe7.png
- SVM 原理描述不正确的是( )。 A: 当训练样本线性可分时,通过硬间隔最大化,学习一个线性分类器,即线性可分支持向量机 B: 当训练数据近似线性可分时,引入松弛变量,通过软间隔最大化,学习一个线性分类器,即线性支持向量机 C: 当训练数据线性不可分时,通过使用核技巧及软间隔最大化,学习非线性支持向量机 D: SVM 的基本模型是在特征空间中寻找间隔最小化的分离超平面的线性分类器
- SVM通过使用核函数可以学习非线性支持向量机,等价于隐式地在______ 的特征空间中学习线性支持向量机。