分别用雅可比迭代与高斯-赛德尔迭代求解下面方程组:[tex=6.929x2.786]fnpmC2J6JmQBLyo5NmGAz5Bo72kJfJcJdFHkIrF1KOon+i6wA4NcqJpDRH6666ochr4ILxJSnLytfxO4jmHanfNmuyZhTEaYQkEafMTbWhg=[/tex]
举一反三
- 设有线性代数方程组[tex=9.857x4.071]fnpmC2J6JmQBLyo5NmGAz6gWLuq+FZ9Xy1vv/z0EnbNdxs7CTt5yvdwe7yizgC1t1dADxJ9DomvKAz+FZx5yxApnMIedRhW4Q7kBC3QhTTXvKfG0UpzxPxAk/AsjxwdpRCZDNgrKURqZzk//NV4u4AfOQYpbOac9KC94T3ib6Qc=[/tex](1)判断雅可比迭代的收敛性;(2)判断高斯-赛德尔迭代的收敛性。[br][/br]
- 给定线性方程组 [tex=16.5x3.929]NeoTBlf1CmkUoMf07Si5dAGux5rN26LAYw4E11YkLsNiQeEaZIfEM3bk2Epo7fpPytYUEKsMESQSOATG1CRA02xzjBvxaGFLTHV6h2D5mTijnBOHmwFWUE9rpKanyf/gKkrxkWGpVtqOGZY9TiY6rJLAWJMwwkwGk2xU1eZwIy+LgVrCy6qubcpGGN4xAl7vGNCtfTgE2rnzPYeZO8L/X80JC2uyzK60ozLKLnoKP0Eln6M4v5h78nl+ird8KpGLhA/Mld+dthdHfjtoTUuJVg==[/tex].1)写出雅可比迭代格式和高斯-赛德尔迭代格式;2)证明雅可比迭代法收敛而高斯赛德尔迭代法发散;3)给 [tex=5.929x1.571]4wpeG2iubwhDqS5afdX5xPkhtj/JG/6dEzctIAjN3UQ=[/tex],用迭代法求出该方程组的解,精确到[tex=11.643x2.357]sbrfngj8hJee1HYCnwltAUhnyXBvvjLEGtCBzkdJiKOKmVIReuPa++FqYMyPUva7pJsXNLcC4bfcYUhtn7FZx9ysZvMJnLkbYVOd8XMawVc=[/tex].
- 产生并输出如下形式的方阵。 1 2 2 2 2 2 1 3 1 2 2 2 1 4 3 3 1 2 1 4 4 3 3 3 1 4 4 4 3 3 1 5 1 4 4 3 1 5 5 5 1 4 1 5 5 5 5 5 1 #include "stdio.h" int main() { int a[7][7],i,j; for(i=0;i<7;i++) for(j=0;j<7;j++) if( (1) || i+j==6) a[i][j]=1; else if ( (2) &&i+j<6) a[i][j]=2; else if (i>j&&i+j<6) a[i][j]=3; else if (i i==j ; j==i ii i+j>6; j+i>6; 6
- 设方程组[tex=12.071x4.071]M/Yeox5bOq02SPK7XRukb1XDSKVNTkOheH8/a0bSZ2zIhxTTJLTKs/Iyn7a50dvjiRT5+1iaP6OLSKwSbF0SFYSqj+dCBj49f7rsuhH/m1JS37SGgFFXbsk35O51BoFNmhBFMB11brj/G8lDokGeU4zXch2/3TtQNecWYa9V8ae0okFi6dmfn8kAJhjL5nRl[/tex](a) 考察用雅可比迭代法、高斯—塞德尔迭代法解此方程组的收敛性;(b) 用雅可比迭代法及高斯—塞德尔迭代法解此方程组,要求当[tex=10.643x1.857]mQZ2NesQTxMccY9JLg34DmUBvs5C3n7hV/wRRESQ7thL4PmLAfzzZjHKyPAaJAnsJ3RwCaDBmZ4LorWSEcU9eA==[/tex]时迭代终止。
- 下面程序运行后,输出结果是( )。#include ;main( ){ int a[10]={1,2,3,4,5,6},i,j; for(i=0;i { j=a[i];a[i]=a[5-i];a[5-i]=j;} for(i=0;i}[/i][/i] A: 1 5 4 3 2 6 B: 1 5 3 4 2 6 C: 6 5 4 3 2 1 D: 1 2 3 4 5 6