A
grammar G, if (), is called LL (1) grammar.
A: G
contains no left recursion
B: G
has no ambiguity
C: The LL (1) analysis table of G does not contain multiple definitions
D: There is no left common factor in the production of G
grammar G, if (), is called LL (1) grammar.
A: G
contains no left recursion
B: G
has no ambiguity
C: The LL (1) analysis table of G does not contain multiple definitions
D: There is no left common factor in the production of G
举一反三
- ( )grammar is not LL(1). A: Recursive B: Right recursive C: Type<br/>2 D: With<br/>common left factor
- Every<br/>grammar can be rewritten to LL(1) grammar. ( ) A: True B: False
- 2H2(g)+1/2I2(g)→HI(g)[br][/br]C、 H2(g)+I2(g)→2HI(g);[br][/br]D、[br][/br]H2(g)+1/2O2(g)→H2O(g)。
- H2(g)+O2(g)→2H2O(l)[br][/br]B、[br][/br]NO(g)+1/2 O2(g)→NO2(g)[br][/br]C、[br][/br]C(金刚石)→C(石墨)[br][/br]D、[br][/br]H2(g)+1/2 O2 (g)→H2O(g)
- Grammer G[]= ( {b} , {N , B} , N , {N→b│ bB , B→bN} ), The language described in this grammar is (). A: L(G[N])={bi│<br/>i ≥ 0} B: L(G[N])={b2i│<br/>i≥ 0} C: L(G[N])={b2i+1│<br/>i ≥ 0} D: L(G[N])={b2i+1│<br/>i ≥ 1}