• 2022-06-09
    设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上有二阶导数, [tex=4.214x1.429]79SmwT+8J9VTqKDgDEyFq6+XZaisZmH3BjOmYlw2bi0=[/tex], 且[tex=5.571x1.357]fZPOLhn8pxWflc83qanxJA==[/tex].证明在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内[tex=3.714x1.357]Com4pU/UZmcA4P5rnHtUqQ==[/tex].
  • 用反证法.若存在[tex=3.286x1.357]9Z7NK3I/8jxvEl6tyFQjrQ==[/tex], 使得[tex=3.0x1.357]2f/RYKcpKQPYbzA218ixxA==[/tex], 即有[tex=8.071x1.357]Yq9yjY1i+mHFmX5HladGqmaqI3tGd+nQo5JupgQGFCc=[/tex].因为[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上有二阶导数,故函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=4.286x1.357]GlTAyQSy45laKPbf0mCE1g==[/tex]上连续,在[tex=4.714x1.357]ZgDPJp45FcuOzNF7aYNMWg==[/tex]内可导,故由罗尔定理知,至少存在点[tex=7.643x1.357]rTZbQx21ya4WCa3uDulOYCHuYYPHWjVb4iCIPQM6EvAHWvwA55dROVROKV7vLZ9v[/tex], 使 [tex=8.5x1.429]k5weWvhPtr/rc567JmOhZe6RQ7JPyoCXYeTOvBagr3VawRbbOADDTQcBi8QKKzJOLjqRFCmH/xGx9tOaufwZrp164aYAftnl95FjtZMKQW8=[/tex].又根据题意知[tex=2.214x1.429]8cd96CjdKQybv+xwHUVQpw==[/tex]在[tex=2.786x1.357]ZwoEJanXdzT5XgnsmpHnw2AJyUZ5yNG6COyrD0+LocucISrCMyEN8rWwiyGREhaH[/tex]上连续,在[tex=2.857x1.357]7vv00UI8kAcTx/XjhiLKcWO55FIqVgOoUkS0bMspH+E=[/tex]内可导,再由罗尔定理知, 至少存在一点[tex=7.214x1.357]8Ee5ZAhmPEr/J4eO+scvl77vNGm0x66yrbHIcCorzy5wmaC0Yyyk+0apCCg04B/GeInbP9p/HVE+tPH2YeDSBg==[/tex], 使 [tex=3.571x1.429]79SmwT+8J9VTqKDgDEyFq/SmlIX6h7uHWyDZl6g9tV0=[/tex],这与条件[tex=4.214x1.429]79SmwT+8J9VTqKDgDEyFq6+XZaisZmH3BjOmYlw2bi0=[/tex]矛盾. 故在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内[tex=3.714x1.357]Com4pU/UZmcA4P5rnHtUqQ==[/tex]

    举一反三

    内容

    • 0

      设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]J5pdOYo+31b9out4RyVbtA==[/tex]上连续,在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导且[tex=4.071x1.429]b+92QgRbOOnD+w8x5M9YxUhOvH3DJr/4nSQbdlWRDeg=[/tex],证明函数[tex=9.571x2.643]nvrFVxX1j11ULW4ha/NmQon1wTFHwPAcmPc86vSBZ6Gf7ayM4BEDThfV3V+irOD9[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内的一阶导数[tex=4.214x1.429]CzbyfntAv6grHDaY/5T8es9F5+q85WcOto3cuIUv528=[/tex]

    • 1

      设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导,且[tex=3.929x1.286]0VLGTLK6v3MkNP58z7HiHRiYa+tAByiT7/p78X428Zo=[/tex]又设[tex=3.714x1.357]ZrYYIDqiFBMbvUsK36RHVw==[/tex],[tex=3.5x1.357]+SeBOzX4aVjbR47kp1NWjA==[/tex],证明:方程[tex=3.214x1.357]a0KviXBQihxXd5dfeZpD+w==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内有且仅有一个根.

    • 2

      设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内连续,且[tex=2.714x1.5]sbopwFh15DGdZNjI1iYy4BCIF+of2Gf+KVIvIOMzH1E=[/tex],[tex=2.643x1.5]IHSXusjiWmyZ2OSczOJSFbS9huIbEWUqkRG2jpVkEYc=[/tex]存在,证明函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内有界.

    • 3

      设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导,证明:在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内至少存在一点[tex=0.5x1.214]qqpHxP43oSTaBTohjVBA4g==[/tex],使[tex=11.429x2.5]WOqEVrpuCOha2ZBQjNNPrAVxQjjfA1h4tb1zjguDu2gGIMJX1FDyEvF1edf6o7UBVNxanJs2u11gkxisMYf5sA==[/tex].

    • 4

      设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内连续,[tex=5.929x1.5]sbopwFh15DGdZNjI1iYy4G6kSElxDmO0lvvMWmfORGBEOuGXy29kO5fEkYxoidfH[/tex]存在,证明: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在 [tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内有界。