z=0分别是1/(sin(z)-z),(e^z-1)/z^3,sin(z)/z^2的几阶极点
z=0分别是1/(sin(z)-z),(e^z-1)/z^3,sin(z)/z^2的几阶极点
9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$
9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$
绘制函数 z=(x+y)^2 的曲面图 A: x=-3:0.1:3; y=-3:0.1:3; z=(x+y)^2; surf(x,y,z) B: x=-3:0.1:3; y=-3:0.1:3; z=(x+y).^2; surf(x,y,z) C: x=-3:0.1:3; y=-3:0.1:3; z=(x+y).^2; meshgrid(x,y,z); surf(x,y,z) D: x=-3:0.1:3; y=-3:0.1:3; [X,Y]=meshgrid(x,y); Z=(X+Y).^2; surf(X,Y,Z)
绘制函数 z=(x+y)^2 的曲面图 A: x=-3:0.1:3; y=-3:0.1:3; z=(x+y)^2; surf(x,y,z) B: x=-3:0.1:3; y=-3:0.1:3; z=(x+y).^2; surf(x,y,z) C: x=-3:0.1:3; y=-3:0.1:3; z=(x+y).^2; meshgrid(x,y,z); surf(x,y,z) D: x=-3:0.1:3; y=-3:0.1:3; [X,Y]=meshgrid(x,y); Z=(X+Y).^2; surf(X,Y,Z)
已知int x=1,y=2,z=3;执行if(x>y) z=x;x=y;y=z;后x,y,z的值为( ) A: x=1,y=2,z=3 B: x=2,y=3,z=3 C: x=2,y=3,z=1 D: x=2,y=3,z=2
已知int x=1,y=2,z=3;执行if(x>y) z=x;x=y;y=z;后x,y,z的值为( ) A: x=1,y=2,z=3 B: x=2,y=3,z=3 C: x=2,y=3,z=1 D: x=2,y=3,z=2
已知int x=1,y=2,z=3;以下语句执行后x,y,z的值是( ). if(x>y) z=x; x=y; y=z; A: x=1, y=2, z=3 B: x=2, y=3, z=3 C: x=2, y=3, z=1 D: x=2, y=3, z=2
已知int x=1,y=2,z=3;以下语句执行后x,y,z的值是( ). if(x>y) z=x; x=y; y=z; A: x=1, y=2, z=3 B: x=2, y=3, z=3 C: x=2, y=3, z=1 D: x=2, y=3, z=2
设有变量定义 int a=1, y=2, z=3; 下列语句序列没有语法错误的是: A: if(x>3); if(y>5) z=7; B: if(x>3); z=6; else z=7; C: if(x<3) if(y>3) z=z+2; y=y-1; else z=z-2; D: if(x<3) else<br> z=z-2;
设有变量定义 int a=1, y=2, z=3; 下列语句序列没有语法错误的是: A: if(x>3); if(y>5) z=7; B: if(x>3); z=6; else z=7; C: if(x<3) if(y>3) z=z+2; y=y-1; else z=z-2; D: if(x<3) else<br> z=z-2;
一空间曲线由参数方程x=t y=sin(2t) , -3<t<3z=cos(3t*t)表示,绘制这段曲线可以由下列哪组语句完成。 A: t=-3:0.1:3;x=t;y=sin(2*t);z=cos(3*t.*t);plot3(x, y, z, t) B: t=-3:0.1:3;x=t;y=sin(2*t);z=cos(3*t*t);plot3(x, y, z) C: t=-3:0.1:3;y=sin(2*t);z=cos(3*t.*t);plot3(x, y, z) D: t=-3:0.1:3;x=t;y=sin(2*t);z=cos(3*t.*t);plot3(x, y, z) E: x=-3:0.1:3;y=sin(2*x);z=cos(3*x.*x);plot3(x, y, z)
一空间曲线由参数方程x=t y=sin(2t) , -3<t<3z=cos(3t*t)表示,绘制这段曲线可以由下列哪组语句完成。 A: t=-3:0.1:3;x=t;y=sin(2*t);z=cos(3*t.*t);plot3(x, y, z, t) B: t=-3:0.1:3;x=t;y=sin(2*t);z=cos(3*t*t);plot3(x, y, z) C: t=-3:0.1:3;y=sin(2*t);z=cos(3*t.*t);plot3(x, y, z) D: t=-3:0.1:3;x=t;y=sin(2*t);z=cos(3*t.*t);plot3(x, y, z) E: x=-3:0.1:3;y=sin(2*x);z=cos(3*x.*x);plot3(x, y, z)
集合A={x,y,z},B={1,2,3},试说明下列A到B的二元关系中,哪些能构成函数 A: {(x,1),(x,2),(y,1),(z,3)} B: {(x,1),(y,1),(z,1)} C: {(x,2),(y,3)} D: {(x,3),(y,2),(z,3),(y,3)} E: {(x,2),(y,1),(z,2)}
集合A={x,y,z},B={1,2,3},试说明下列A到B的二元关系中,哪些能构成函数 A: {(x,1),(x,2),(y,1),(z,3)} B: {(x,1),(y,1),(z,1)} C: {(x,2),(y,3)} D: {(x,3),(y,2),(z,3),(y,3)} E: {(x,2),(y,1),(z,2)}
已知x=1,y=2,z=3,执行下列语句if(x>y) z=x;x=y;y=z;则x,y,z的值分别是 A: x=1,y=2,z=3 B: x=2,y=3,z=1 C: x=2,y=2,z=1 D: x=2,y=3,z=3
已知x=1,y=2,z=3,执行下列语句if(x>y) z=x;x=y;y=z;则x,y,z的值分别是 A: x=1,y=2,z=3 B: x=2,y=3,z=1 C: x=2,y=2,z=1 D: x=2,y=3,z=3
设方程\(z^2+y^2+z^2 = 4z\)确定函数\(z=z(x,y)\),则\( { { {\partial ^2}z} \over {\partial {x^2}}} =\) A: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2+ z)}^3}}}\) B: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\) C: \( { { { { (2 - z)}^2} -{x^2}} \over { { {(2 - z)}^3}}}\) D: \( { { { { (2 + z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\)
设方程\(z^2+y^2+z^2 = 4z\)确定函数\(z=z(x,y)\),则\( { { {\partial ^2}z} \over {\partial {x^2}}} =\) A: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2+ z)}^3}}}\) B: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\) C: \( { { { { (2 - z)}^2} -{x^2}} \over { { {(2 - z)}^3}}}\) D: \( { { { { (2 + z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\)