亨利定律表达式是()。 A: Y*=mx B: Y*=mx<sub>2</sub> C: Y*=m/x D: Y*=x/m
亨利定律表达式是()。 A: Y*=mx B: Y*=mx<sub>2</sub> C: Y*=m/x D: Y*=x/m
现有如下谓词逻辑推理:x(Mx→Px),x(Sx→Mx)├$x(Sx∧Mx)。下列说法正确的是:
现有如下谓词逻辑推理:x(Mx→Px),x(Sx→Mx)├$x(Sx∧Mx)。下列说法正确的是:
中国大学MOOC: 现有如下谓词逻辑推理:x(Mx→Px),x(Sx→Mx)├$x(Sx∧Mx)。下列说法正确的是:
中国大学MOOC: 现有如下谓词逻辑推理:x(Mx→Px),x(Sx→Mx)├$x(Sx∧Mx)。下列说法正确的是:
将\(f(x) = {1 \over {2 - x}}\)展开成\(x \)的幂级数为( )。 A: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(( - 2,2)\) B: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(\left( { - 2,2} \right]\) C: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(( - 2,2)\) D: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(\left( { - 2,2} \right]\)
将\(f(x) = {1 \over {2 - x}}\)展开成\(x \)的幂级数为( )。 A: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(( - 2,2)\) B: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(\left( { - 2,2} \right]\) C: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(( - 2,2)\) D: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(\left( { - 2,2} \right]\)
集合A={X∈NㅣX<;2},集合B={X∈NㅣX<;5}则A∩B=() A: {X∈NㅣX<;2} B: {X∈NㅣX<;5} C: {X<;2} D: {X<;5}
集合A={X∈NㅣX<;2},集合B={X∈NㅣX<;5}则A∩B=() A: {X∈NㅣX<;2} B: {X∈NㅣX<;5} C: {X<;2} D: {X<;5}
\( {1 \over {1 + x}} \)的麦克劳林公式为( )。 A: \( {1 \over {1 + x}} = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \) B: \( {1 \over {1 + x}} = 1 + x + {x^2} + \cdots + {x^n} + o\left( { { x^n}} \right) \) C: \( {1 \over {1 + x}} = 1 - x + {x^2} - \cdots + {( - 1)^n}{x^n} + o\left( { { x^n}} \right) \) D: \( {1 \over {1 + x}} = 1 - x - { { {x^2}} \over 2}- \cdots - { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \)
\( {1 \over {1 + x}} \)的麦克劳林公式为( )。 A: \( {1 \over {1 + x}} = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \) B: \( {1 \over {1 + x}} = 1 + x + {x^2} + \cdots + {x^n} + o\left( { { x^n}} \right) \) C: \( {1 \over {1 + x}} = 1 - x + {x^2} - \cdots + {( - 1)^n}{x^n} + o\left( { { x^n}} \right) \) D: \( {1 \over {1 + x}} = 1 - x - { { {x^2}} \over 2}- \cdots - { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \)
亨利定律表达式是()。 A: Y*=mx B: Y*=mx C: Y*=m/x D: Y*=x/m
亨利定律表达式是()。 A: Y*=mx B: Y*=mx C: Y*=m/x D: Y*=x/m
\( {1 \over {1 + x}} \)的麦克劳林公式为( ). A: \( {1 \over {1 + x}} = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \) B: \( {1 \over {1 + x}} = 1 + x + {x^2} + \cdots + {x^n} + o\left( { { x^n}} \right) \) C: \( {1 \over {1 + x}} = 1 - x + {x^2} - \cdots + {( - 1)^n}{x^n} + o\left( { { x^n}} \right) \)
\( {1 \over {1 + x}} \)的麦克劳林公式为( ). A: \( {1 \over {1 + x}} = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \) B: \( {1 \over {1 + x}} = 1 + x + {x^2} + \cdots + {x^n} + o\left( { { x^n}} \right) \) C: \( {1 \over {1 + x}} = 1 - x + {x^2} - \cdots + {( - 1)^n}{x^n} + o\left( { { x^n}} \right) \)
下面系统是线性的有()。 A: y(n)=g(n)x(n) B: y(n)=[x(n)]2(2为幂次方) C: y(n)=x(-n) D: y(n)=x(n2) (2为n幂次方)
下面系统是线性的有()。 A: y(n)=g(n)x(n) B: y(n)=[x(n)]2(2为幂次方) C: y(n)=x(-n) D: y(n)=x(n2) (2为n幂次方)
用δ(n)及其延迟项表示序列x(n)={2, -3 , 4,1},结果为( ) A: x(n)=2δ(n)-3δ(n-1)+4δ(n-2)+δ(n-3 B: x(n)=2δ(n-1)-3δ(n)+4δ(n+1)+δ(n+2) C: x(n)=2δ(n+1)-3δ(n)+4δ(n-1)+δ(n-2) D: x(n)=2δ(n)-3δ(n+1)+4δ(n+2)+δ(n+3)
用δ(n)及其延迟项表示序列x(n)={2, -3 , 4,1},结果为( ) A: x(n)=2δ(n)-3δ(n-1)+4δ(n-2)+δ(n-3 B: x(n)=2δ(n-1)-3δ(n)+4δ(n+1)+δ(n+2) C: x(n)=2δ(n+1)-3δ(n)+4δ(n-1)+δ(n-2) D: x(n)=2δ(n)-3δ(n+1)+4δ(n+2)+δ(n+3)