设X ~ N(2, 9)则Y = (X – 2 )/9 ~ N(0, 1).
设X ~ N(2, 9)则Y = (X – 2 )/9 ~ N(0, 1).
中国大学MOOC: 设X~N(2, 9)则Y= (X– 2 )/9 ~N(0, 1).
中国大学MOOC: 设X~N(2, 9)则Y= (X– 2 )/9 ~N(0, 1).
设X ~ N(2, 9)则Y = (X – 2 )/9 ~ N(0, 1). A: 正确 B: 错误
设X ~ N(2, 9)则Y = (X – 2 )/9 ~ N(0, 1). A: 正确 B: 错误
已知随机变量X~B(n,1/2),且P{X=5}=1/32,则n=___________
已知随机变量X~B(n,1/2),且P{X=5}=1/32,则n=___________
与数学式子[img=43x34]17e0acb62c85ed0.jpg[/img]对应的C语言表达式是 A: 9*x^n/(2*x-1) B: 9*x**n/(2*x-1) C: 9*pow(x,n)*(1/(2*x-1)) D: 9*pow(n,x)/(2*x-1)
与数学式子[img=43x34]17e0acb62c85ed0.jpg[/img]对应的C语言表达式是 A: 9*x^n/(2*x-1) B: 9*x**n/(2*x-1) C: 9*pow(x,n)*(1/(2*x-1)) D: 9*pow(n,x)/(2*x-1)
已知随机变量X~B(n,1/2),且P{X=5}=1/32,则n=___________ A: 5 B: 6 C: 7 D: 8
已知随机变量X~B(n,1/2),且P{X=5}=1/32,则n=___________ A: 5 B: 6 C: 7 D: 8
中国大学MOOC: 设X~N(2, 9)则Y= (X– 2 )/9 ~N(0,1).
中国大学MOOC: 设X~N(2, 9)则Y= (X– 2 )/9 ~N(0,1).
\( {1 \over {1 + x}} \)的麦克劳林公式为( )。 A: \( {1 \over {1 + x}} = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \) B: \( {1 \over {1 + x}} = 1 + x + {x^2} + \cdots + {x^n} + o\left( { { x^n}} \right) \) C: \( {1 \over {1 + x}} = 1 - x + {x^2} - \cdots + {( - 1)^n}{x^n} + o\left( { { x^n}} \right) \) D: \( {1 \over {1 + x}} = 1 - x - { { {x^2}} \over 2}- \cdots - { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \)
\( {1 \over {1 + x}} \)的麦克劳林公式为( )。 A: \( {1 \over {1 + x}} = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \) B: \( {1 \over {1 + x}} = 1 + x + {x^2} + \cdots + {x^n} + o\left( { { x^n}} \right) \) C: \( {1 \over {1 + x}} = 1 - x + {x^2} - \cdots + {( - 1)^n}{x^n} + o\left( { { x^n}} \right) \) D: \( {1 \over {1 + x}} = 1 - x - { { {x^2}} \over 2}- \cdots - { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \)
X为随机变量,E(X)=-1,D(X)=3,则E{3(X^2)+20}=()? A: 18 B: 9 C: 30 D: 32
X为随机变量,E(X)=-1,D(X)=3,则E{3(X^2)+20}=()? A: 18 B: 9 C: 30 D: 32
\( {1 \over {1 + x}} \)的麦克劳林公式为( ). A: \( {1 \over {1 + x}} = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \) B: \( {1 \over {1 + x}} = 1 + x + {x^2} + \cdots + {x^n} + o\left( { { x^n}} \right) \) C: \( {1 \over {1 + x}} = 1 - x + {x^2} - \cdots + {( - 1)^n}{x^n} + o\left( { { x^n}} \right) \)
\( {1 \over {1 + x}} \)的麦克劳林公式为( ). A: \( {1 \over {1 + x}} = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \) B: \( {1 \over {1 + x}} = 1 + x + {x^2} + \cdots + {x^n} + o\left( { { x^n}} \right) \) C: \( {1 \over {1 + x}} = 1 - x + {x^2} - \cdots + {( - 1)^n}{x^n} + o\left( { { x^n}} \right) \)