定义在(0,+∞)上的可导函数f(x)满足xf′(x)-f(x)<0,则对任意a,b∈(0,+∞)且a>b,有() A: af(a)>bf(b) B: bf(a)>af(b) C: af(a)<bf(b) D: bf(a)<af(b)
定义在(0,+∞)上的可导函数f(x)满足xf′(x)-f(x)<0,则对任意a,b∈(0,+∞)且a>b,有() A: af(a)>bf(b) B: bf(a)>af(b) C: af(a)<bf(b) D: bf(a)<af(b)
f(x)=x(x+1)(x+2(x-3), f'(0)=( ) A: 0 B: 1 C: -3 D: -6
f(x)=x(x+1)(x+2(x-3), f'(0)=( ) A: 0 B: 1 C: -3 D: -6
设函数f(x)在区间(0,+∞)内具有二阶导数,满足f(0)=0,f"(x)<0,又0<a<b,则当a<x<b时恒有( ) A: af(x)>xf(a) B: bf(x)>xf(b) C: xf(x)>bf(b) D: xf(x)>af
设函数f(x)在区间(0,+∞)内具有二阶导数,满足f(0)=0,f"(x)<0,又0<a<b,则当a<x<b时恒有( ) A: af(x)>xf(a) B: bf(x)>xf(b) C: xf(x)>bf(b) D: xf(x)>af
${\rm var}(X)=\,$ ${\bf E}[X]=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
${\rm var}(X)=\,$ ${\bf E}[X]=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]
f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]
设f(x)在(0,+∞)二阶可导,满足f(0)=0,f(x)在x=0处可导,f"(x)<0(x>0),又设b>a>0,则a<x<b时恒有 A: af(x)>xf(a). B: bf(x)>xf(b). C: xf(x)>bf(b). D: xf(x)>af(a).
设f(x)在(0,+∞)二阶可导,满足f(0)=0,f(x)在x=0处可导,f"(x)<0(x>0),又设b>a>0,则a<x<b时恒有 A: af(x)>xf(a). B: bf(x)>xf(b). C: xf(x)>bf(b). D: xf(x)>af(a).
设f(x)=x(x-1)(x-2)(x-3),则f’(0)=() A: -6 B: -2 C: 3 D: -3
设f(x)=x(x-1)(x-2)(x-3),则f’(0)=() A: -6 B: -2 C: 3 D: -3
逻辑函数F(A,B,C)=[img=126x26]1803e2b2f7e3a00.png[/img]的最小项标准式为( ) A: F=Σm(6、7) B: F=Σm(0、1、6、7) C: F=Σm(1、6、7) D: F=Σm(0、2、3、4、6)
逻辑函数F(A,B,C)=[img=126x26]1803e2b2f7e3a00.png[/img]的最小项标准式为( ) A: F=Σm(6、7) B: F=Σm(0、1、6、7) C: F=Σm(1、6、7) D: F=Σm(0、2、3、4、6)
逻辑函数的最小项表达式为() A: F=Σm(0、2、5、7) B: C: F=Σm(1、3、6) D: F=Σm(0、1、2、6、7)
逻辑函数的最小项表达式为() A: F=Σm(0、2、5、7) B: C: F=Σm(1、3、6) D: F=Σm(0、1、2、6、7)
设f''(x)在[0,2]连续,且f(0)=1,f(2)=3,f(2)=5,则。xf''(2x)dx=()。 A: 3 B: 2 C: 7 D: 6
设f''(x)在[0,2]连续,且f(0)=1,f(2)=3,f(2)=5,则。xf''(2x)dx=()。 A: 3 B: 2 C: 7 D: 6