• 2022-07-02 问题

    (接上题)(2)设经分界面反射的波的振幅和入射波的振幅相等,则反射波的波函数是 A: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{2} \right),0\le x\le\dfrac{3\lambda}{4}$ B: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$ C: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{4} \right),0\le x\le\dfrac{3\lambda}{4}$ D: $y_{r}=Acos\left(2\pi \nu t-\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$

    (接上题)(2)设经分界面反射的波的振幅和入射波的振幅相等,则反射波的波函数是 A: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{2} \right),0\le x\le\dfrac{3\lambda}{4}$ B: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$ C: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{4} \right),0\le x\le\dfrac{3\lambda}{4}$ D: $y_{r}=Acos\left(2\pi \nu t-\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$

  • 2022-07-02 问题

    (2)设经分界面反射的波的振幅和入射波的振幅相等,则反射波的波函数是 A: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{2} \right),0\le x\le\dfrac{3\lambda}{4}$ B: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$ C: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{4} \right),0\le x\le\dfrac{3\lambda}{4}$ D: $y_{r}=Acos\left(2\pi \nu t-\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$

    (2)设经分界面反射的波的振幅和入射波的振幅相等,则反射波的波函数是 A: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{2} \right),0\le x\le\dfrac{3\lambda}{4}$ B: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$ C: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{4} \right),0\le x\le\dfrac{3\lambda}{4}$ D: $y_{r}=Acos\left(2\pi \nu t-\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$

  • 2022-07-28 问题

    3.6 考虑一个可转移效用的特征函数型合作博弈:\(\nu(1)=1,\ \nu(2)=2, \nu(3)=3,\ \nu(12)=3,\ \nu(13)=5,\ \nu(23)=7,\ \nu(N)=9.\)选项中,哪些分配向量是属于博弈\((N,\nu)\)的核心。 A: 平等分配向量 \(\overline{x}=(\frac{\nu(N)}{n},\frac{\nu(N)}{n},\frac{\nu(N)}{n})\); B: 沙普利值; C: 分配向量 (1,1,7); D: 分配向量 (2,3,4).

    3.6 考虑一个可转移效用的特征函数型合作博弈:\(\nu(1)=1,\ \nu(2)=2, \nu(3)=3,\ \nu(12)=3,\ \nu(13)=5,\ \nu(23)=7,\ \nu(N)=9.\)选项中,哪些分配向量是属于博弈\((N,\nu)\)的核心。 A: 平等分配向量 \(\overline{x}=(\frac{\nu(N)}{n},\frac{\nu(N)}{n},\frac{\nu(N)}{n})\); B: 沙普利值; C: 分配向量 (1,1,7); D: 分配向量 (2,3,4).

  • 2022-07-28 问题

    对于空气在竖夹层中自然对流换热,当Gr<2000时( ) A: Nu=1 B: Nu=2 C: Nu=3 D: Nu=4

    对于空气在竖夹层中自然对流换热,当Gr<2000时( ) A: Nu=1 B: Nu=2 C: Nu=3 D: Nu=4

  • 2022-07-23 问题

    3.4 考虑一个可转移效用的特征函数型合作博弈:\(\nu(1)=1,\ \nu(2)=2, \nu(3)=3,\ \nu(12)=3,\ \nu(13)=5,\<br/>\nu(23)=7,\ \nu(N)=9.\)博弈的核心是凸多边形。 确定核心的顶点数量,及其每个顶点的坐标。选择所有作为核心的顶点的点。 A: (2,4,3) B: (1,4,4) C: (1,3,5) D: (1,2,6) E: (2,3,4) F: (2,2,5)

    3.4 考虑一个可转移效用的特征函数型合作博弈:\(\nu(1)=1,\ \nu(2)=2, \nu(3)=3,\ \nu(12)=3,\ \nu(13)=5,\<br/>\nu(23)=7,\ \nu(N)=9.\)博弈的核心是凸多边形。 确定核心的顶点数量,及其每个顶点的坐标。选择所有作为核心的顶点的点。 A: (2,4,3) B: (1,4,4) C: (1,3,5) D: (1,2,6) E: (2,3,4) F: (2,2,5)

  • 2022-06-30 问题

    如果一维谐振子处于$n=3$的激发态上,并且谐振子由于退激放出光子,假设谐振子振动的频率为$\nu$,则光子的频率为: A: $\nu$ B: $2\nu$ C: $3\nu$ D: 以上都有可能

    如果一维谐振子处于$n=3$的激发态上,并且谐振子由于退激放出光子,假设谐振子振动的频率为$\nu$,则光子的频率为: A: $\nu$ B: $2\nu$ C: $3\nu$ D: 以上都有可能

  • 2022-07-25 问题

    当质点以频率\(\nu\)作简谐振动时,它的动能的变化频率为 A: \(\nu\) B: 2\(\nu\) C: 4\(\nu\) D: \(\nu\)/2

    当质点以频率\(\nu\)作简谐振动时,它的动能的变化频率为 A: \(\nu\) B: 2\(\nu\) C: 4\(\nu\) D: \(\nu\)/2

  • 2022-06-18 问题

    ‌羊的齿式为‎ A: 2(0 0 3 0/ 4 0 3 0)=20 B: 2(0 0 3 3/ 4 0 3 3)=32 C: 2(4 0 3 0/ 4 0 3 0)=28 D: 2(4 0 3 3/ 4 0 3 3)=40

    ‌羊的齿式为‎ A: 2(0 0 3 0/ 4 0 3 0)=20 B: 2(0 0 3 3/ 4 0 3 3)=32 C: 2(4 0 3 0/ 4 0 3 0)=28 D: 2(4 0 3 3/ 4 0 3 3)=40

  • 2021-04-14 问题

    【单选题】如图示代码,下面哪个是正确的输出结果 A. 0  1  2  3  4  5 B. 0  1  2  3  4  5 0  1  2  3  4  5 0  1  2  3  4  5 0  1  2  3  4  5 C. 0  1  2  3  4  5 0  1  2  3  4  5 0  1  2  3  4  5 D. 0  1  2  3  4  5 0  1  2  3  4  5 0  1  2  3  4  5 0  1  2  3  4  5 0  1  2  3  4  5

    【单选题】如图示代码,下面哪个是正确的输出结果 A. 0  1  2  3  4  5 B. 0  1  2  3  4  5 0  1  2  3  4  5 0  1  2  3  4  5 0  1  2  3  4  5 C. 0  1  2  3  4  5 0  1  2  3  4  5 0  1  2  3  4  5 D. 0  1  2  3  4  5 0  1  2  3  4  5 0  1  2  3  4  5 0  1  2  3  4  5 0  1  2  3  4  5

  • 2022-06-03 问题

    如下线性规划模型的最显然的一个基可行解是 max z=x1+2*x2s.t. 3*x1+x2&#91;=3 2x1+3*x2<=2 x1&#93;=0, x2>=0 A: (0 0 3 2) B: (0 3 2 0) C: (3 2 0 0 ) D: (2 3 0 0)

    如下线性规划模型的最显然的一个基可行解是 max z=x1+2*x2s.t. 3*x1+x2&#91;=3 2x1+3*x2<=2 x1&#93;=0, x2>=0 A: (0 0 3 2) B: (0 3 2 0) C: (3 2 0 0 ) D: (2 3 0 0)

  • 1 2 3 4 5 6 7 8 9 10