(接上题)(2)设经分界面反射的波的振幅和入射波的振幅相等,则反射波的波函数是 A: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{2} \right),0\le x\le\dfrac{3\lambda}{4}$ B: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$ C: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{4} \right),0\le x\le\dfrac{3\lambda}{4}$ D: $y_{r}=Acos\left(2\pi \nu t-\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$
(接上题)(2)设经分界面反射的波的振幅和入射波的振幅相等,则反射波的波函数是 A: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{2} \right),0\le x\le\dfrac{3\lambda}{4}$ B: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$ C: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{4} \right),0\le x\le\dfrac{3\lambda}{4}$ D: $y_{r}=Acos\left(2\pi \nu t-\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$
(2)设经分界面反射的波的振幅和入射波的振幅相等,则反射波的波函数是 A: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{2} \right),0\le x\le\dfrac{3\lambda}{4}$ B: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$ C: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{4} \right),0\le x\le\dfrac{3\lambda}{4}$ D: $y_{r}=Acos\left(2\pi \nu t-\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$
(2)设经分界面反射的波的振幅和入射波的振幅相等,则反射波的波函数是 A: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{2} \right),0\le x\le\dfrac{3\lambda}{4}$ B: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$ C: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{4} \right),0\le x\le\dfrac{3\lambda}{4}$ D: $y_{r}=Acos\left(2\pi \nu t-\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$
3.6 考虑一个可转移效用的特征函数型合作博弈:\(\nu(1)=1,\ \nu(2)=2, \nu(3)=3,\ \nu(12)=3,\ \nu(13)=5,\ \nu(23)=7,\ \nu(N)=9.\)选项中,哪些分配向量是属于博弈\((N,\nu)\)的核心。 A: 平等分配向量 \(\overline{x}=(\frac{\nu(N)}{n},\frac{\nu(N)}{n},\frac{\nu(N)}{n})\); B: 沙普利值; C: 分配向量 (1,1,7); D: 分配向量 (2,3,4).
3.6 考虑一个可转移效用的特征函数型合作博弈:\(\nu(1)=1,\ \nu(2)=2, \nu(3)=3,\ \nu(12)=3,\ \nu(13)=5,\ \nu(23)=7,\ \nu(N)=9.\)选项中,哪些分配向量是属于博弈\((N,\nu)\)的核心。 A: 平等分配向量 \(\overline{x}=(\frac{\nu(N)}{n},\frac{\nu(N)}{n},\frac{\nu(N)}{n})\); B: 沙普利值; C: 分配向量 (1,1,7); D: 分配向量 (2,3,4).
对于空气在竖夹层中自然对流换热,当Gr<2000时( ) A: Nu=1 B: Nu=2 C: Nu=3 D: Nu=4
对于空气在竖夹层中自然对流换热,当Gr<2000时( ) A: Nu=1 B: Nu=2 C: Nu=3 D: Nu=4
3.4 考虑一个可转移效用的特征函数型合作博弈:\(\nu(1)=1,\ \nu(2)=2, \nu(3)=3,\ \nu(12)=3,\ \nu(13)=5,\<br/>\nu(23)=7,\ \nu(N)=9.\)博弈的核心是凸多边形。 确定核心的顶点数量,及其每个顶点的坐标。选择所有作为核心的顶点的点。 A: (2,4,3) B: (1,4,4) C: (1,3,5) D: (1,2,6) E: (2,3,4) F: (2,2,5)
3.4 考虑一个可转移效用的特征函数型合作博弈:\(\nu(1)=1,\ \nu(2)=2, \nu(3)=3,\ \nu(12)=3,\ \nu(13)=5,\<br/>\nu(23)=7,\ \nu(N)=9.\)博弈的核心是凸多边形。 确定核心的顶点数量,及其每个顶点的坐标。选择所有作为核心的顶点的点。 A: (2,4,3) B: (1,4,4) C: (1,3,5) D: (1,2,6) E: (2,3,4) F: (2,2,5)
如果一维谐振子处于$n=3$的激发态上,并且谐振子由于退激放出光子,假设谐振子振动的频率为$\nu$,则光子的频率为: A: $\nu$ B: $2\nu$ C: $3\nu$ D: 以上都有可能
如果一维谐振子处于$n=3$的激发态上,并且谐振子由于退激放出光子,假设谐振子振动的频率为$\nu$,则光子的频率为: A: $\nu$ B: $2\nu$ C: $3\nu$ D: 以上都有可能
当质点以频率\(\nu\)作简谐振动时,它的动能的变化频率为 A: \(\nu\) B: 2\(\nu\) C: 4\(\nu\) D: \(\nu\)/2
当质点以频率\(\nu\)作简谐振动时,它的动能的变化频率为 A: \(\nu\) B: 2\(\nu\) C: 4\(\nu\) D: \(\nu\)/2
羊的齿式为 A: 2(0 0 3 0/ 4 0 3 0)=20 B: 2(0 0 3 3/ 4 0 3 3)=32 C: 2(4 0 3 0/ 4 0 3 0)=28 D: 2(4 0 3 3/ 4 0 3 3)=40
羊的齿式为 A: 2(0 0 3 0/ 4 0 3 0)=20 B: 2(0 0 3 3/ 4 0 3 3)=32 C: 2(4 0 3 0/ 4 0 3 0)=28 D: 2(4 0 3 3/ 4 0 3 3)=40
【单选题】如图示代码,下面哪个是正确的输出结果 A. 0 1 2 3 4 5 B. 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 C. 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 D. 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
【单选题】如图示代码,下面哪个是正确的输出结果 A. 0 1 2 3 4 5 B. 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 C. 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 D. 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
如下线性规划模型的最显然的一个基可行解是 max z=x1+2*x2s.t. 3*x1+x2[=3 2x1+3*x2<=2 x1]=0, x2>=0 A: (0 0 3 2) B: (0 3 2 0) C: (3 2 0 0 ) D: (2 3 0 0)
如下线性规划模型的最显然的一个基可行解是 max z=x1+2*x2s.t. 3*x1+x2[=3 2x1+3*x2<=2 x1]=0, x2>=0 A: (0 0 3 2) B: (0 3 2 0) C: (3 2 0 0 ) D: (2 3 0 0)