• 2022-07-23 问题

    函数$f(x,y)=\sin x\cdot \ln (1+y)$在点$(0,0)$处带有Peano型余项的3阶Taylor公式为$f(x,y)=$ A: $xy+\frac{1}{2}x{{y}^{2}}+o({{(\sqrt{{{x}^{2}}+{{y}^{2}}})}^{3}})$ B: $xy-\frac{1}{2}x{{y}^{2}}+o({{(\sqrt{{{x}^{2}}+{{y}^{2}}})}^{3}})$ C: $xy-x{{y}^{2}}+o({{(\sqrt{{{x}^{2}}+{{y}^{2}}})}^{3}})$ D: $xy+x{{y}^{2}}+o({{(\sqrt{{{x}^{2}}+{{y}^{2}}})}^{3}})$

    函数$f(x,y)=\sin x\cdot \ln (1+y)$在点$(0,0)$处带有Peano型余项的3阶Taylor公式为$f(x,y)=$ A: $xy+\frac{1}{2}x{{y}^{2}}+o({{(\sqrt{{{x}^{2}}+{{y}^{2}}})}^{3}})$ B: $xy-\frac{1}{2}x{{y}^{2}}+o({{(\sqrt{{{x}^{2}}+{{y}^{2}}})}^{3}})$ C: $xy-x{{y}^{2}}+o({{(\sqrt{{{x}^{2}}+{{y}^{2}}})}^{3}})$ D: $xy+x{{y}^{2}}+o({{(\sqrt{{{x}^{2}}+{{y}^{2}}})}^{3}})$

  • 2022-06-12 问题

    \( {1 \over {1 + x}} \)的麦克劳林公式为( )。 A: \( {1 \over {1 + x}} = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \) B: \( {1 \over {1 + x}} = 1 + x + {x^2} + \cdots + {x^n} + o\left( { { x^n}} \right) \) C: \( {1 \over {1 + x}} = 1 - x + {x^2} - \cdots + {( - 1)^n}{x^n} + o\left( { { x^n}} \right) \) D: \( {1 \over {1 + x}} = 1 - x - { { {x^2}} \over 2}- \cdots - { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \)

    \( {1 \over {1 + x}} \)的麦克劳林公式为( )。 A: \( {1 \over {1 + x}} = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \) B: \( {1 \over {1 + x}} = 1 + x + {x^2} + \cdots + {x^n} + o\left( { { x^n}} \right) \) C: \( {1 \over {1 + x}} = 1 - x + {x^2} - \cdots + {( - 1)^n}{x^n} + o\left( { { x^n}} \right) \) D: \( {1 \over {1 + x}} = 1 - x - { { {x^2}} \over 2}- \cdots - { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \)

  • 2022-06-12 问题

    \( {1 \over {1 + x}} \)的麦克劳林公式为( ). A: \( {1 \over {1 + x}} = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \) B: \( {1 \over {1 + x}} = 1 + x + {x^2} + \cdots + {x^n} + o\left( { { x^n}} \right) \) C: \( {1 \over {1 + x}} = 1 - x + {x^2} - \cdots + {( - 1)^n}{x^n} + o\left( { { x^n}} \right) \)

    \( {1 \over {1 + x}} \)的麦克劳林公式为( ). A: \( {1 \over {1 + x}} = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \) B: \( {1 \over {1 + x}} = 1 + x + {x^2} + \cdots + {x^n} + o\left( { { x^n}} \right) \) C: \( {1 \over {1 + x}} = 1 - x + {x^2} - \cdots + {( - 1)^n}{x^n} + o\left( { { x^n}} \right) \)

  • 2022-06-12 问题

    \( \sin x \)的麦克劳林公式为( ). A: \( \sin x = x - { { {x^3}} \over {3!}} + { { {x^5}} \over {5!}} - \cdots + {( - 1)^n} { { {x^{2n + 1}}} \over {\left( {2n + 1} \right)!}} + o\left( { { x^{2n + 2}}} \right) \) B: \( \sin x = 1 - { { {x^2}} \over {2!}} + { { {x^4}} \over {4!}} - { { {x^6}} \over {6!}} + \cdots + {( - 1)^n} { { {x^{2n}}} \over {\left( {2n} \right)!}} + o\left( { { x^{2n + 1}}} \right) \) C: \( \sin x = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \)

    \( \sin x \)的麦克劳林公式为( ). A: \( \sin x = x - { { {x^3}} \over {3!}} + { { {x^5}} \over {5!}} - \cdots + {( - 1)^n} { { {x^{2n + 1}}} \over {\left( {2n + 1} \right)!}} + o\left( { { x^{2n + 2}}} \right) \) B: \( \sin x = 1 - { { {x^2}} \over {2!}} + { { {x^4}} \over {4!}} - { { {x^6}} \over {6!}} + \cdots + {( - 1)^n} { { {x^{2n}}} \over {\left( {2n} \right)!}} + o\left( { { x^{2n + 1}}} \right) \) C: \( \sin x = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \)

  • 2022-05-28 问题

    试分析下面代码段的时间复杂度: for(i=1;i<=n;++i) for(j=1;j<=n;++j) { ++x; s+=x; } A: O(1) B: O(n) C: O(n^2) D: O(n^3)

    试分析下面代码段的时间复杂度: for(i=1;i<=n;++i) for(j=1;j<=n;++j) { ++x; s+=x; } A: O(1) B: O(n) C: O(n^2) D: O(n^3)

  • 2022-06-07 问题

    ‌求时间复杂度:‎‌x=n; //n>1‎‌y=0;‎‌while(x≥(y+1)* (y+1)){‎‌ y++;‎‌}‎ A: O(1) B: O(n) C: O(√n ) D: O(n^2)

    ‌求时间复杂度:‎‌x=n; //n>1‎‌y=0;‎‌while(x≥(y+1)* (y+1)){‎‌ y++;‎‌}‎ A: O(1) B: O(n) C: O(√n ) D: O(n^2)

  • 2021-04-14 问题

    设int a=9,b=8,c=7,x=1; ,则执行语句 if(a>7)if(b>8)if(c>9)x=2;else x=3;后x的值是( )。

    设int a=9,b=8,c=7,x=1; ,则执行语句 if(a>7)if(b>8)if(c>9)x=2;else x=3;后x的值是( )。

  • 2021-04-14 问题

    设int a = 9,b = 8,c = 7, x = 1;则执行语句后x的值是: if (a>7) if (b>8) if (c>9) x=2 ; else x = 3;

    设int a = 9,b = 8,c = 7, x = 1;则执行语句后x的值是: if (a>7) if (b>8) if (c>9) x=2 ; else x = 3;

  • 2022-05-28 问题

    试分析下面代码段的时间复杂度: for(i=2;i<=n;++i) for(j=2;j<=i-1;++j) { ++x; a[i]&#91;j&#93;=x; }[/i] A: O(1) B: O(n) C: O(n^2) D: O(n^3)

    试分析下面代码段的时间复杂度: for(i=2;i<=n;++i) for(j=2;j<=i-1;++j) { ++x; a[i]&#91;j&#93;=x; }[/i] A: O(1) B: O(n) C: O(n^2) D: O(n^3)

  • 2022-06-07 问题

    请问以下方法的时间复杂度是多少?int n = 10;for (i = 1; i < n; ++i) {    for (j = 1; j < n; j += n / 2) {        for (k = 1; k < n; k = 2 * k) {            x = x + 1;        }    }} A: O(n^3) B: O(n2logn) C: O(n(logn)*2) D: O(nlogn)

    请问以下方法的时间复杂度是多少?int n = 10;for (i = 1; i < n; ++i) {    for (j = 1; j < n; j += n / 2) {        for (k = 1; k < n; k = 2 * k) {            x = x + 1;        }    }} A: O(n^3) B: O(n2logn) C: O(n(logn)*2) D: O(nlogn)

  • 1 2 3 4 5 6 7 8 9 10