____sprechen Sie?1)Mit wem 2) Mit was 3)Über was 4) Was über A: Mit was 3)Über was 4) Was über B: Mit wem C: Über was 4) Was über D: Was über
____sprechen Sie?1)Mit wem 2) Mit was 3)Über was 4) Was über A: Mit was 3)Über was 4) Was über B: Mit wem C: Über was 4) Was über D: Was über
若要求:当数学式3 A: if(x>3)if(x<7)y=1; B: if(x>3||x<7)y=1; C: if(x<3);elseif(x<7)y=1 D: if(!(x<=3))y=y;elseif(7>x)y=1;
若要求:当数学式3 A: if(x>3)if(x<7)y=1; B: if(x>3||x<7)y=1; C: if(x<3);elseif(x<7)y=1 D: if(!(x<=3))y=y;elseif(7>x)y=1;
【单选题】设全集U={x|-7≤x≤7},A={x|-1≤x4},B={x|-2≤x≤3},Cu(A∪B)= A. {x|-7≤x≤-1} B. {x|-7≤x≤-1或3<x≤7} C. {x|-7≤x<2或4≤x≤7} D. {4≤x≤7}
【单选题】设全集U={x|-7≤x≤7},A={x|-1≤x4},B={x|-2≤x≤3},Cu(A∪B)= A. {x|-7≤x≤-1} B. {x|-7≤x≤-1或3<x≤7} C. {x|-7≤x<2或4≤x≤7} D. {4≤x≤7}
set1 = {x for x in range(10) if x%2!=0} set1.remove(1) print(set1) 以上代码的运行结果为? A: {1, 3, 5, 7, 9} B: {1, 3, 5, 7} C: {3, 5, 7, 9} D: {3, 5, 7}
set1 = {x for x in range(10) if x%2!=0} set1.remove(1) print(set1) 以上代码的运行结果为? A: {1, 3, 5, 7, 9} B: {1, 3, 5, 7} C: {3, 5, 7, 9} D: {3, 5, 7}
设全集为R,集合A={x|-1=() A: {x|x≤-1} B: {x|x>3} C: {x|x D: {x|x≤-1或x>3}
设全集为R,集合A={x|-1=() A: {x|x≤-1} B: {x|x>3} C: {x|x D: {x|x≤-1或x>3}
set1 = {x for x in range(10) if x%2!=0} print(set1) 以上代码的运行结果为? A: {1, 3, 5, 7, 9} B: {1, 3, 5, 7} C: {3, 5, 7, 9} D: {3, 5, 7}
set1 = {x for x in range(10) if x%2!=0} print(set1) 以上代码的运行结果为? A: {1, 3, 5, 7, 9} B: {1, 3, 5, 7} C: {3, 5, 7, 9} D: {3, 5, 7}
A={x|-1<x<2},B={x|1<x<3},则A∪B.=R A: 正确 B: 错误
A={x|-1<x<2},B={x|1<x<3},则A∪B.=R A: 正确 B: 错误
已知集合A={x|-1<x<2},集合B={x|1<x<3},全集U=R
已知集合A={x|-1<x<2},集合B={x|1<x<3},全集U=R
Simplify the expression:$({\frac{3x^{3/2}y^3}{x^2y^{-1/2}})^{-2}}$Which answer is CORRECT? A: $9xy^7$ B: $\frac19 xy^{-7}$ C: $\frac19 x^{-1}y^7$ D: $9 x^{-1}y^7$
Simplify the expression:$({\frac{3x^{3/2}y^3}{x^2y^{-1/2}})^{-2}}$Which answer is CORRECT? A: $9xy^7$ B: $\frac19 xy^{-7}$ C: $\frac19 x^{-1}y^7$ D: $9 x^{-1}y^7$
用谓词逻辑推理证明:有理数都是实数,有的有理数是整数,因此有的实数是整数。判断推理证明是否正确。 证明:设Q(x):x为有理数;R(x):x为实数;Z(x):x为整数; 前提:∀x(Q(x)→R(x)),∃x(Q(x)∧Z(x)); 结论:∃x(R(x)∧Z(x))。 (1)∃x(Q(x)∧Z(x)) 前提引入 (2)Q(c)∧Z(c) (1)∃- (3)∀x(Q(x)→R(x)) 前提引入 (4)Q(c)→R(c) (3)∀- ( 5 )Q(c) (2) 化简 ( 6 )R(c) (4)(5) 假言推理 ( 7 )Z(c) (2) 化简 (8)R(c)∧ Z(c) (6)(7) 合取引入 (9)∃x(R(x)∧Z(x)) (8)∃+
用谓词逻辑推理证明:有理数都是实数,有的有理数是整数,因此有的实数是整数。判断推理证明是否正确。 证明:设Q(x):x为有理数;R(x):x为实数;Z(x):x为整数; 前提:∀x(Q(x)→R(x)),∃x(Q(x)∧Z(x)); 结论:∃x(R(x)∧Z(x))。 (1)∃x(Q(x)∧Z(x)) 前提引入 (2)Q(c)∧Z(c) (1)∃- (3)∀x(Q(x)→R(x)) 前提引入 (4)Q(c)→R(c) (3)∀- ( 5 )Q(c) (2) 化简 ( 6 )R(c) (4)(5) 假言推理 ( 7 )Z(c) (2) 化简 (8)R(c)∧ Z(c) (6)(7) 合取引入 (9)∃x(R(x)∧Z(x)) (8)∃+