In a linear stretching transformation ( s=ar+b ),when a and b take any value,can be gray value respectively from 24 and 156 to 15 and 213 ?
In a linear stretching transformation ( s=ar+b ),when a and b take any value,can be gray value respectively from 24 and 156 to 15 and 213 ?
213
213
中国大学MOOC: In a linear stretching transformation ( s=ar+b ),when a and b take any value,can be gray value respectively from 24 and 156 to 15 and 213 ?
中国大学MOOC: In a linear stretching transformation ( s=ar+b ),when a and b take any value,can be gray value respectively from 24 and 156 to 15 and 213 ?
Ifsin<em>x</em>=7/25,thentan<em>x</em>=______. A: 7/20 B: 24/25 C: 7/24 D: 24/7 E: 8/24
Ifsin<em>x</em>=7/25,thentan<em>x</em>=______. A: 7/20 B: 24/25 C: 7/24 D: 24/7 E: 8/24
3和48之间插入三个数x ,y,z,使这五个数成等比数列,则这三个数分别是( ). A: x=6,y=12,z=24 B: x=-6,y=12,z=-24 C: x=-6,y=-12,z=-24 D: x=6,y=12,z=24或x=-6,y=12,z=-24
3和48之间插入三个数x ,y,z,使这五个数成等比数列,则这三个数分别是( ). A: x=6,y=12,z=24 B: x=-6,y=12,z=-24 C: x=-6,y=-12,z=-24 D: x=6,y=12,z=24或x=-6,y=12,z=-24
下列语句的执行结果是True。 x = [24, 50, 37] y = 24 in x print(y)
下列语句的执行结果是True。 x = [24, 50, 37] y = 24 in x print(y)
(213)10=(______)16
(213)10=(______)16
执行语句int[]x=newint[25];后,正确的说法是() A: x[24]为0 B: x[24]未定义 C: x[25]为0 D: x[0]为空
执行语句int[]x=newint[25];后,正确的说法是() A: x[24]为0 B: x[24]未定义 C: x[25]为0 D: x[0]为空
执行完代码"int[]x=newint[25];"后以下()说明正确的 A: x[24]为0 B: x[24]未定义 C: x[25]为0 D: x[0]为空
执行完代码"int[]x=newint[25];"后以下()说明正确的 A: x[24]为0 B: x[24]未定义 C: x[25]为0 D: x[0]为空
以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)
以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)