• 2022-05-30 问题

    $\int_{0}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{4}}{[\cos (2t)\mathbf{i}+\sin (2t)\mathbf{j}+t\sin t\mathbf{k}]}\operatorname{dt}=$( ) A: $(\frac{1}{2},\frac{1}{2},\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$ B: $(1,\frac{1}{2},\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$ C: $(\frac{1}{2},1,\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$ D: $(1,1,\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$

    $\int_{0}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{4}}{[\cos (2t)\mathbf{i}+\sin (2t)\mathbf{j}+t\sin t\mathbf{k}]}\operatorname{dt}=$( ) A: $(\frac{1}{2},\frac{1}{2},\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$ B: $(1,\frac{1}{2},\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$ C: $(\frac{1}{2},1,\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$ D: $(1,1,\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$

  • 2021-04-14 问题

    Text 1

    Text 1

  • 2022-05-27 问题

    从原点向曲线$$y=1-\ln x$$作切线,则由切线、曲线和$$x$$轴围成图形的面积为(). A: $$\frac{1}{2}{{\text{e}}^{2}}+\text{e}$$ B: $$\frac{1}{2}{{\text{e}}^{2}}-\text{e}$$ C: $${{\text{e}}^{2}}+\text{e}$$ D: $${{\text{e}}^{2}}-\text{e}$$

    从原点向曲线$$y=1-\ln x$$作切线,则由切线、曲线和$$x$$轴围成图形的面积为(). A: $$\frac{1}{2}{{\text{e}}^{2}}+\text{e}$$ B: $$\frac{1}{2}{{\text{e}}^{2}}-\text{e}$$ C: $${{\text{e}}^{2}}+\text{e}$$ D: $${{\text{e}}^{2}}-\text{e}$$

  • 2022-06-05 问题

    Skim the text and answer the following questions. 1) What type of writing is the text?

    Skim the text and answer the following questions. 1) What type of writing is the text?

  • 2022-05-30 问题

    函数$f(x)=x+\sin x$的( )。 A: 上凸区间为$(2n\text{ }\!\!\pi\!\!\text{ },(2n+1)\text{ }\!\!\pi\!\!\text{ })$,下凸区间为$((2n-1)\text{ }\!\!\pi\!\!\text{ },2n\text{ }\!\!\pi\!\!\text{ })$ B: 上凸区间为$((2n-1)\text{ }\!\!\pi\!\!\text{ },2n\text{ }\!\!\pi\!\!\text{ })$,下凸区间为$(2n\text{ }\!\!\pi\!\!\text{ },(2n+1)\text{ }\!\!\pi\!\!\text{ })$ C: 上凸区间为$(n\text{ }\!\!\pi\!\!\text{ },(n+1)\text{ }\!\!\pi\!\!\text{ })$,下凸区间为$((n-1)\text{ }\!\!\pi\!\!\text{ },n\text{ }\!\!\pi\!\!\text{ })$ D: 上凸区间为$((n-1)\text{ }\!\!\pi\!\!\text{ },n\text{ }\!\!\pi\!\!\text{ })$,下凸区间为$(n\text{ }\!\!\pi\!\!\text{ },(n+1)\text{ }\!\!\pi\!\!\text{ })$

    函数$f(x)=x+\sin x$的( )。 A: 上凸区间为$(2n\text{ }\!\!\pi\!\!\text{ },(2n+1)\text{ }\!\!\pi\!\!\text{ })$,下凸区间为$((2n-1)\text{ }\!\!\pi\!\!\text{ },2n\text{ }\!\!\pi\!\!\text{ })$ B: 上凸区间为$((2n-1)\text{ }\!\!\pi\!\!\text{ },2n\text{ }\!\!\pi\!\!\text{ })$,下凸区间为$(2n\text{ }\!\!\pi\!\!\text{ },(2n+1)\text{ }\!\!\pi\!\!\text{ })$ C: 上凸区间为$(n\text{ }\!\!\pi\!\!\text{ },(n+1)\text{ }\!\!\pi\!\!\text{ })$,下凸区间为$((n-1)\text{ }\!\!\pi\!\!\text{ },n\text{ }\!\!\pi\!\!\text{ })$ D: 上凸区间为$((n-1)\text{ }\!\!\pi\!\!\text{ },n\text{ }\!\!\pi\!\!\text{ })$,下凸区间为$(n\text{ }\!\!\pi\!\!\text{ },(n+1)\text{ }\!\!\pi\!\!\text{ })$

  • 2022-06-16 问题

    已知齐次方程$(x-1){{y}^{''}}-x{{y}^{'}}+y=0$的通解为$Y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}$,则方程$(x-1){{y}^{''}}-x{{y}^{'}}+y={{(x-1)}^{2}}$的通解是( ) A: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-({{x}^{2}}+1)$ B: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-({{x}^{3}}+1)$ C: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-{{x}^{2}}$ D: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-{{x}^{2}}+1$

    已知齐次方程$(x-1){{y}^{''}}-x{{y}^{'}}+y=0$的通解为$Y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}$,则方程$(x-1){{y}^{''}}-x{{y}^{'}}+y={{(x-1)}^{2}}$的通解是( ) A: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-({{x}^{2}}+1)$ B: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-({{x}^{3}}+1)$ C: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-{{x}^{2}}$ D: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-{{x}^{2}}+1$

  • 2022-06-07 问题

    There are _____ texts. They are Text A _________________, Text B _________________, Text C _________________, Text D _________________.

    There are _____ texts. They are Text A _________________, Text B _________________, Text C _________________, Text D _________________.

  • 2021-04-14 问题

    There five texts in Chapter 6. Text A _________________________; Text B _______________________; Text C _______________________; Text C _______________________; Text E _______________________;

    There five texts in Chapter 6. Text A _________________________; Text B _______________________; Text C _______________________; Text C _______________________; Text E _______________________;

  • 2022-06-30 问题

    对数螺线$r={{\text{e}}^{\theta }}$在$\theta =\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$对应点处的切线的直角坐标方程为( )。 A: $y+x={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}$ B: $y-x={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}$ C: $y={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}(x+1)$ D: $y={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}(x-1)$

    对数螺线$r={{\text{e}}^{\theta }}$在$\theta =\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$对应点处的切线的直角坐标方程为( )。 A: $y+x={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}$ B: $y-x={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}$ C: $y={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}(x+1)$ D: $y={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}(x-1)$

  • 2021-04-14 问题

    Part 1 : The text begins with an _________.

    Part 1 : The text begins with an _________.

  • 1 2 3 4 5 6 7 8 9 10