有下列四组量子数: (1) n = 3,l = 2,ml = 0,mz=1/2. (2) n = 3,l = 3,ml = 1,mz=1/2. (3) n = 3,l = 1,ml = -1,mz=-1/2. (4) n = 3,l = 0,ml = 0, mz=-1/2. 其中可以描述原子中电子状态的
有下列四组量子数: (1) n = 3,l = 2,ml = 0,mz=1/2. (2) n = 3,l = 3,ml = 1,mz=1/2. (3) n = 3,l = 1,ml = -1,mz=-1/2. (4) n = 3,l = 0,ml = 0, mz=-1/2. 其中可以描述原子中电子状态的
有下列四组量子数: (1)00a0 n = 3,l = 2,ml = 0,mz=1/2. (2)00a0 n = 3,l = 3,ml = 1,mz=1/2. (3)00a0 n = 3,l = 1,ml = -1,mz=-1/2. (4)00a0 n = 3,l = 0,ml = 0, mz=-1/2. 其中可以描述原子中电子状态的
有下列四组量子数: (1)00a0 n = 3,l = 2,ml = 0,mz=1/2. (2)00a0 n = 3,l = 3,ml = 1,mz=1/2. (3)00a0 n = 3,l = 1,ml = -1,mz=-1/2. (4)00a0 n = 3,l = 0,ml = 0, mz=-1/2. 其中可以描述原子中电子状态的
已知一个序列x(n)的z变换X(z)定义成[img=140x46]17e0bb90d234a43.jpg[/img]已知某数字系统的[img=191x22]17e0bb91a52fc70.jpg[/img],则单位脉冲响应h(n)= A: h(n)={1, 2, 0, 2, 1} , 0≤n≤4 B: h(n)={1, 2, 2, 1} , 0≤n≤3 C: h(n)={1, 2, 0, 2, 1} , 1≤n≤4 D: h(n)={1, 2, 2, 1} , 1≤n≤4
已知一个序列x(n)的z变换X(z)定义成[img=140x46]17e0bb90d234a43.jpg[/img]已知某数字系统的[img=191x22]17e0bb91a52fc70.jpg[/img],则单位脉冲响应h(n)= A: h(n)={1, 2, 0, 2, 1} , 0≤n≤4 B: h(n)={1, 2, 2, 1} , 0≤n≤3 C: h(n)={1, 2, 0, 2, 1} , 1≤n≤4 D: h(n)={1, 2, 2, 1} , 1≤n≤4
已知一个序列x(n)的z变换X(z)定义成[img=140x46]17e4422545608da.jpg[/img]已知某数字系统的[img=191x22]17e442257956284.jpg[/img],则单位脉冲响应h(n)= A: h(n)={1, 2, 0, 2, 1} , 0≤n≤4 B: h(n)={1, 2, 2, 1} , 0≤n≤3 C: h(n)={1, 2, 0, 2, 1} , 1≤n≤4 D: h(n)={1, 2, 2, 1} , 1≤n≤4
已知一个序列x(n)的z变换X(z)定义成[img=140x46]17e4422545608da.jpg[/img]已知某数字系统的[img=191x22]17e442257956284.jpg[/img],则单位脉冲响应h(n)= A: h(n)={1, 2, 0, 2, 1} , 0≤n≤4 B: h(n)={1, 2, 2, 1} , 0≤n≤3 C: h(n)={1, 2, 0, 2, 1} , 1≤n≤4 D: h(n)={1, 2, 2, 1} , 1≤n≤4
已知x(n)={1, 2, 3},y(n)={1, 2, 1},则x(n)*y(n)=________。(下划线表示n=0) A: {1, 4, 8, 8, 3} B: {1, 4, 8, 8, 3} C: {1, 4, 8, 8, 3} D: {1, 4, 8, 8, 3}
已知x(n)={1, 2, 3},y(n)={1, 2, 1},则x(n)*y(n)=________。(下划线表示n=0) A: {1, 4, 8, 8, 3} B: {1, 4, 8, 8, 3} C: {1, 4, 8, 8, 3} D: {1, 4, 8, 8, 3}
设序列x(n)={4, 3, 2, 1},另一序列h(n) ={0, 1,0,0},n=0, 1, 2, 3,则两者的线性卷积为( ) A: {4,7,9,10,7,3,1} B: {0, 4, 3, 2, 1, 0, 0} C: {4,9,9,10,6,3,2} D: {4,7,9,11,6,4,1}
设序列x(n)={4, 3, 2, 1},另一序列h(n) ={0, 1,0,0},n=0, 1, 2, 3,则两者的线性卷积为( ) A: {4,7,9,10,7,3,1} B: {0, 4, 3, 2, 1, 0, 0} C: {4,9,9,10,6,3,2} D: {4,7,9,11,6,4,1}
将\(f(x) = {1 \over {2 - x}}\)展开成\(x \)的幂级数为( )。 A: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(( - 2,2)\) B: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(\left( { - 2,2} \right]\) C: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(( - 2,2)\) D: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(\left( { - 2,2} \right]\)
将\(f(x) = {1 \over {2 - x}}\)展开成\(x \)的幂级数为( )。 A: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(( - 2,2)\) B: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(\left( { - 2,2} \right]\) C: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(( - 2,2)\) D: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(\left( { - 2,2} \right]\)
设X ~ N ( 0 , 1 ),Y ~ N ( 0 , 1 ),且X与Y相互独立,则D(X – Y) = ( ). A: 1 B: 2 C: 3 D: 4
设X ~ N ( 0 , 1 ),Y ~ N ( 0 , 1 ),且X与Y相互独立,则D(X – Y) = ( ). A: 1 B: 2 C: 3 D: 4
阅读程序,分析程序执行结果是( )。#include[stdio.h]int main(){ int n=0,m=1,x=2; if(!n)x-=1; if(m) x-=2; if(x) x=x-3; printf("%d\n",x); return 0;} A: 2 B: -6 C: -1 D: -4
阅读程序,分析程序执行结果是( )。#include[stdio.h]int main(){ int n=0,m=1,x=2; if(!n)x-=1; if(m) x-=2; if(x) x=x-3; printf("%d\n",x); return 0;} A: 2 B: -6 C: -1 D: -4
随机变量X服从正态分布N(0, 4),Φ(x)为标准正态分布的分布函数,则P{X < 1}= ( ). A: Φ(2) B: 1-Φ(1/2) C: Φ(4) D: Φ(1/2)
随机变量X服从正态分布N(0, 4),Φ(x)为标准正态分布的分布函数,则P{X < 1}= ( ). A: Φ(2) B: 1-Φ(1/2) C: Φ(4) D: Φ(1/2)