9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$
9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$
设方程\(z^2+y^2+z^2 = 4z\)确定函数\(z=z(x,y)\),则\( { { {\partial ^2}z} \over {\partial {x^2}}} =\) A: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2+ z)}^3}}}\) B: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\) C: \( { { { { (2 - z)}^2} -{x^2}} \over { { {(2 - z)}^3}}}\) D: \( { { { { (2 + z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\)
设方程\(z^2+y^2+z^2 = 4z\)确定函数\(z=z(x,y)\),则\( { { {\partial ^2}z} \over {\partial {x^2}}} =\) A: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2+ z)}^3}}}\) B: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\) C: \( { { { { (2 - z)}^2} -{x^2}} \over { { {(2 - z)}^3}}}\) D: \( { { { { (2 + z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\)
1)z^2=z拔(2)z^2+|z|=0
1)z^2=z拔(2)z^2+|z|=0
若检验的假设为H0∶μ=μ0,H1∶μ≠μ0,则拒绝域为 ( )。 A: z >; zα B: z <; zα C: z >; zα/2或z <; -zα/2 D: z >; zα或z <; -zα
若检验的假设为H0∶μ=μ0,H1∶μ≠μ0,则拒绝域为 ( )。 A: z >; zα B: z <; zα C: z >; zα/2或z <; -zα/2 D: z >; zα或z <; -zα
【简答题】设 z 1 =4 + 3i , z 2 =2 - 3i ,计算 z 1 · z 2
【简答题】设 z 1 =4 + 3i , z 2 =2 - 3i ,计算 z 1 · z 2
若检验的假设为H0:u≤u0,H1:u>u0,则拒绝域为()。 A: z>z B: z<- z C: z>zα/2或z<-zα/2 D: z>z或z<-z。
若检验的假设为H0:u≤u0,H1:u>u0,则拒绝域为()。 A: z>z B: z<- z C: z>zα/2或z<-zα/2 D: z>z或z<-z。
f(z)=e^(z^2)*sin(z^2),求f(z)展成Z的幂级数,
f(z)=e^(z^2)*sin(z^2),求f(z)展成Z的幂级数,
若检验的假设为H0:u=u0,H1:u≠u0,则拒绝域为( )。 A: Z<;Zα B: Z>;Zα/2 或Z<;-Zα/2 C: Z<;-Zα D: Z>;Zα
若检验的假设为H0:u=u0,H1:u≠u0,则拒绝域为( )。 A: Z<;Zα B: Z>;Zα/2 或Z<;-Zα/2 C: Z<;-Zα D: Z>;Zα
若复数z 1=1+i ,z 2=3-i ,则z 1·z 2等于
若复数z 1=1+i ,z 2=3-i ,则z 1·z 2等于
z=0为f(z)=z^2 (e^(z^2 )-1)的 级零点,
z=0为f(z)=z^2 (e^(z^2 )-1)的 级零点,