已知f(x)=ax2-3ax+a2-1(a<0),则f(3),f(-3),f(32)从小到大的顺序是f(-3)<f(3)<f(32)f(-3)<f(3)<f(32).
已知f(x)=ax2-3ax+a2-1(a<0),则f(3),f(-3),f(32)从小到大的顺序是f(-3)<f(3)<f(32)f(-3)<f(3)<f(32).
偶函数y=f(x)在(-∞,0)上单调递增,则有( ) A: f(-3)>f(π)>f(-3π) B: f(π)>f(-3)>f(-3π) C: f(-3π)>f(-3)>f(π) D: f(-3)>f(-3π)>f(π)
偶函数y=f(x)在(-∞,0)上单调递增,则有( ) A: f(-3)>f(π)>f(-3π) B: f(π)>f(-3)>f(-3π) C: f(-3π)>f(-3)>f(π) D: f(-3)>f(-3π)>f(π)
已知$f(t) \Longleftrightarrow F(j\omega)$,则$f(4-3t) $的傅立叶变换为 A: $\frac{1}{3} F(-j \frac{\omega}{3}) e^{-j \frac{4}{3} \omega}$ B: $3F(-j3\omega) e^{-j \frac{3}{4} \omega}$ C: $\frac{1}{3} F(j \frac{\omega}{3}) e^{-j \frac{4}{3} \omega}$ D: $3F(j3\omega) e^{-j \frac{3}{4} \omega}$
已知$f(t) \Longleftrightarrow F(j\omega)$,则$f(4-3t) $的傅立叶变换为 A: $\frac{1}{3} F(-j \frac{\omega}{3}) e^{-j \frac{4}{3} \omega}$ B: $3F(-j3\omega) e^{-j \frac{3}{4} \omega}$ C: $\frac{1}{3} F(j \frac{\omega}{3}) e^{-j \frac{4}{3} \omega}$ D: $3F(j3\omega) e^{-j \frac{3}{4} \omega}$
设f(x)=x2+bx+x满足关系式f(1+x)=f(1-x),则下述结论中,正确的是( ). A: f(0)>f(1)>f(3) B: f(1)>f(0)>f(3) C: f(3)>f(1)>f(0) D: f(3)>f(0)>f(1) E: f(1)>f(3)>f(0)
设f(x)=x2+bx+x满足关系式f(1+x)=f(1-x),则下述结论中,正确的是( ). A: f(0)>f(1)>f(3) B: f(1)>f(0)>f(3) C: f(3)>f(1)>f(0) D: f(3)>f(0)>f(1) E: f(1)>f(3)>f(0)
Which thetwochoices are equivalent?() A: 3 / 2 B: 3 < 2 C: 3 * 4 D: 3 << 2 E: 3 * 22 F: 3 <<<2
Which thetwochoices are equivalent?() A: 3 / 2 B: 3 < 2 C: 3 * 4 D: 3 << 2 E: 3 * 22 F: 3 <<<2
Which two are equivalent?() A: 3/2 B: 3<2 C: 3*4 D: 3<<2 E: 3*2^2 F: 3<<<2
Which two are equivalent?() A: 3/2 B: 3<2 C: 3*4 D: 3<<2 E: 3*2^2 F: 3<<<2
已知int f(int);和int g(int);是函数f 和g 的原形。下列语句中,将函数f 作为表达式调用的有( ) A)f(3); B B)p=f(3); C)g(f(3)); D)f(g(3)); A: f(3); B: p=f(3); C: g(f(3)); D: f(g(3));
已知int f(int);和int g(int);是函数f 和g 的原形。下列语句中,将函数f 作为表达式调用的有( ) A)f(3); B B)p=f(3); C)g(f(3)); D)f(g(3)); A: f(3); B: p=f(3); C: g(f(3)); D: f(g(3));
设函数$y = f({x^3})$可导,求函数的二阶导数$y'' = $( ) A: $6xf'({x^3}) + 9{x^4}f''({x^3})$ B: $6f'({x^3}) + 9{x^3}f''({x^3})$ C: $6xf'({x^3}) + 9{x^3}f''({x^3})$ D: $6{x^2}f'({x^3}) + 9{x^3}f''({x^3})$
设函数$y = f({x^3})$可导,求函数的二阶导数$y'' = $( ) A: $6xf'({x^3}) + 9{x^4}f''({x^3})$ B: $6f'({x^3}) + 9{x^3}f''({x^3})$ C: $6xf'({x^3}) + 9{x^3}f''({x^3})$ D: $6{x^2}f'({x^3}) + 9{x^3}f''({x^3})$
信号f(6-3t)表示( )。 A: ( f(3左移6 B: ( f(3左移2 C: ( f(3右移6 D: ( f(-3右移2
信号f(6-3t)表示( )。 A: ( f(3左移6 B: ( f(3左移2 C: ( f(3右移6 D: ( f(-3右移2
下列表达式等价的有()。 A: 3/2 B: 3<2 C: 3*4 D: 3<<2 E: 3*2^2 F: 3<<<2
下列表达式等价的有()。 A: 3/2 B: 3<2 C: 3*4 D: 3<<2 E: 3*2^2 F: 3<<<2