计算积分∫sinz/z^2dz,|z|=1,∫cosz/[z(z+1)]dz,|z|=2,积分曲线均正向,∫(cos^2)x/(1+x^2)dx,∞→0
计算积分∫sinz/z^2dz,|z|=1,∫cosz/[z(z+1)]dz,|z|=2,积分曲线均正向,∫(cos^2)x/(1+x^2)dx,∞→0
δ[n]的z变换为: A: 1 B: δ(ω) C: 2πδ(ω) D: 2π
δ[n]的z变换为: A: 1 B: δ(ω) C: 2πδ(ω) D: 2π
序列 2nu(n) 的Z变换表达式为[填空1],其收敛域为( ) A: z/(z-2);|z|<2 B: z/(z-2);|z|>2 C: z/(z-1);|z|>1 D: z/(z-1);|z|<1
序列 2nu(n) 的Z变换表达式为[填空1],其收敛域为( ) A: z/(z-2);|z|<2 B: z/(z-2);|z|>2 C: z/(z-1);|z|>1 D: z/(z-1);|z|<1
给以下程序填空,能输出{0:['python',123],1:['java',456],2:['c',789]}结果的选项是______。 x=("python","java","c") y=[123,456,789] z={} foriinrange(len(x)): ___________ print(z) A: z[i]=list(zip(x,y)) B: z[i]=x[i],y[i] C: z[i]=[x[i],y[i]] D: z[i]=x,y
给以下程序填空,能输出{0:['python',123],1:['java',456],2:['c',789]}结果的选项是______。 x=("python","java","c") y=[123,456,789] z={} foriinrange(len(x)): ___________ print(z) A: z[i]=list(zip(x,y)) B: z[i]=x[i],y[i] C: z[i]=[x[i],y[i]] D: z[i]=x,y
若f(z),g(z)在单连域G内解析且g(z)≠0,C为G内任意一条闭曲线,则∮_C▒[f(z)/g(z)]dz= A: 0 B: 2πif(0)/g(0) C: 2πi D: 2π
若f(z),g(z)在单连域G内解析且g(z)≠0,C为G内任意一条闭曲线,则∮_C▒[f(z)/g(z)]dz= A: 0 B: 2πif(0)/g(0) C: 2πi D: 2π
设方程\(z^2+y^2+z^2 = 4z\)确定函数\(z=z(x,y)\),则\( { { {\partial ^2}z} \over {\partial {x^2}}} =\) A: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2+ z)}^3}}}\) B: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\) C: \( { { { { (2 - z)}^2} -{x^2}} \over { { {(2 - z)}^3}}}\) D: \( { { { { (2 + z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\)
设方程\(z^2+y^2+z^2 = 4z\)确定函数\(z=z(x,y)\),则\( { { {\partial ^2}z} \over {\partial {x^2}}} =\) A: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2+ z)}^3}}}\) B: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\) C: \( { { { { (2 - z)}^2} -{x^2}} \over { { {(2 - z)}^3}}}\) D: \( { { { { (2 + z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\)
9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$
9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$
若A=[-2,1],B={z|z=x2,-1≤x≤m},且A∩B=[0,1],则m的取值范围为( ) A: [0,1] B: [-1,0] C: [0,+∞) D: [-1,1]
若A=[-2,1],B={z|z=x2,-1≤x≤m},且A∩B=[0,1],则m的取值范围为( ) A: [0,1] B: [-1,0] C: [0,+∞) D: [-1,1]
语句 x, y, z = [1, 2, 3] 执行后,变量y的值为__________
语句 x, y, z = [1, 2, 3] 执行后,变量y的值为__________
正则表达式“[^a-z]”,可以匹配下列的字符串为()。 A: a B: z C: 2 D: m
正则表达式“[^a-z]”,可以匹配下列的字符串为()。 A: a B: z C: 2 D: m