设\( \Omega \) 是由\( 1 \le x \le 2 \) ,\( 0 \le y \le 1 \) ,\( 0 \le z \le 2 \) 所围区域,则\( \mathop{\int\!\!\!\int\!\!\!\int}\limits_{\kern-5.5pt \Omega } { { x^2}yz} dv \) =\( {7 \over 3} \)
设\( \Omega \) 是由\( 1 \le x \le 2 \) ,\( 0 \le y \le 1 \) ,\( 0 \le z \le 2 \) 所围区域,则\( \mathop{\int\!\!\!\int\!\!\!\int}\limits_{\kern-5.5pt \Omega } { { x^2}yz} dv \) =\( {7 \over 3} \)
设\(D\)为\( 1 \le x \le 2 \) 和\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D { { x^2}{e^{2y}}} d\sigma \) =\( {6 \over 7}\left( { { e^2} - 1} \right) \) 。
设\(D\)为\( 1 \le x \le 2 \) 和\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D { { x^2}{e^{2y}}} d\sigma \) =\( {6 \over 7}\left( { { e^2} - 1} \right) \) 。
“Nl IF[#2 LE 10]GOT02;”段中 LE 表示大于。
“Nl IF[#2 LE 10]GOT02;”段中 LE 表示大于。
\(\left\{ {\left( {x,y} \right)\left| {2 \le {x^2} + {y^2} \le 4} \right.} \right\}\)是闭区域.
\(\left\{ {\left( {x,y} \right)\left| {2 \le {x^2} + {y^2} \le 4} \right.} \right\}\)是闭区域.
设D是由\( 0 \le x \le 1 \) ,\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D {\left| { { x^2} + {y^2} - 1} \right|} d\sigma \) = \( {\pi \over 4} - {1 \over 2} \) 。
设D是由\( 0 \le x \le 1 \) ,\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D {\left| { { x^2} + {y^2} - 1} \right|} d\sigma \) = \( {\pi \over 4} - {1 \over 2} \) 。
函数\(f(x) = \left\{ {\matrix{ { { x^2} - 1\;, - 1 \le x < 0} \cr {x\;\quad \;,0 \le x < 1} \cr {2 - x\;\quad ,1 \le x \le 2} \cr } } \right.\)在\(x =\)( )处间断。______
函数\(f(x) = \left\{ {\matrix{ { { x^2} - 1\;, - 1 \le x < 0} \cr {x\;\quad \;,0 \le x < 1} \cr {2 - x\;\quad ,1 \le x \le 2} \cr } } \right.\)在\(x =\)( )处间断。______
设D:\(0 \le x \le \pi ,0 \le y \le {\pi \over 2}\),则\(\int\!\!\!\int\limits_D {sinxcosydxdy} \)的值为______
设D:\(0 \le x \le \pi ,0 \le y \le {\pi \over 2}\),则\(\int\!\!\!\int\limits_D {sinxcosydxdy} \)的值为______
设\(D\)是由\( - 1 \le x \le 1 \) ,\( 0 \le y \le 2 \) 所围区域,则\( \int\!\!\!\int\limits_D {\left| {y - {x^2}} \right|} d\sigma \) = \( { { 45} \over {16}} \) 。
设\(D\)是由\( - 1 \le x \le 1 \) ,\( 0 \le y \le 2 \) 所围区域,则\( \int\!\!\!\int\limits_D {\left| {y - {x^2}} \right|} d\sigma \) = \( { { 45} \over {16}} \) 。
在其定义区间上连续的函数是( )。 A: \(f(x) = \left\{ {\matrix{ {x\quad ,{\rm{0}} \le x \le {\rm{1}}} \cr {1 - x\quad ,1 < x \le 2} \cr } } \right.\) B: \(f(x) = \left\{ {\matrix{ {x\quad ,0 < x \le 1 } \cr {2 - x\quad ,1 < x \le 2} \cr } } \right.\) C: \(f(x) = \left\{ {\matrix{ {x\;\quad ,0 \le x < 1} \cr {0\;\quad \quad ,x = 1} \cr {2 - x\quad ,1 < x \le 2} \cr } } \right.\) D: \(f(x) = \left\{ {\matrix{ { { 1 \over {x - 1}}\quad ,0 \le x \le 1} \cr {0\quad ,1 \le x \le 2} \cr } } \right.\)
在其定义区间上连续的函数是( )。 A: \(f(x) = \left\{ {\matrix{ {x\quad ,{\rm{0}} \le x \le {\rm{1}}} \cr {1 - x\quad ,1 < x \le 2} \cr } } \right.\) B: \(f(x) = \left\{ {\matrix{ {x\quad ,0 < x \le 1 } \cr {2 - x\quad ,1 < x \le 2} \cr } } \right.\) C: \(f(x) = \left\{ {\matrix{ {x\;\quad ,0 \le x < 1} \cr {0\;\quad \quad ,x = 1} \cr {2 - x\quad ,1 < x \le 2} \cr } } \right.\) D: \(f(x) = \left\{ {\matrix{ { { 1 \over {x - 1}}\quad ,0 \le x \le 1} \cr {0\quad ,1 \le x \le 2} \cr } } \right.\)
Nous sommes le 2 mars.
Nous sommes le 2 mars.