如图,在△AOC与△BOC中,若AO=OB,∠1=∠2,根据______ 可以证明△AOC≌△BOC.
如图,在△AOC与△BOC中,若AO=OB,∠1=∠2,根据______ 可以证明△AOC≌△BOC.
已知∠AOB=80°,∠AOC=30°,则∠BOC=( ).
已知∠AOB=80°,∠AOC=30°,则∠BOC=( ).
以下HDB3码中,哪些可以确定其中有误码 A: +1 0 0 0 -1 0 +1 -1 +1 0 0 +1 0 -1 +1 -1 0 0 -1 +1…… B: +1 0 0 -1 +1 0 0 0 +1 -1 0 0 -1 0 0 0 +1 0 0 +1 -1…… C: -1 0 0 0 -1 0 +1 0 0 0 +1 -1 +1 0 0 +1 0 0 -1 +1…… D: -1 0 +1 0 0 0 -1 +1 0 0 0 +1 -1 +1 -1 0 0 -1 +1 0 -1……
以下HDB3码中,哪些可以确定其中有误码 A: +1 0 0 0 -1 0 +1 -1 +1 0 0 +1 0 -1 +1 -1 0 0 -1 +1…… B: +1 0 0 -1 +1 0 0 0 +1 -1 0 0 -1 0 0 0 +1 0 0 +1 -1…… C: -1 0 0 0 -1 0 +1 0 0 0 +1 -1 +1 0 0 +1 0 0 -1 +1…… D: -1 0 +1 0 0 0 -1 +1 0 0 0 +1 -1 +1 -1 0 0 -1 +1 0 -1……
对HDB3码-1000+100-1000-1+1000+1-1+1-100-1+1-1进行译码,结果是( )。 A: 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 B: 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 C: 1 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 D: 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1
对HDB3码-1000+100-1000-1+1000+1-1+1-100-1+1-1进行译码,结果是( )。 A: 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 B: 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 C: 1 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 D: 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1
编写程序,创建下列10*10的数组,数组边界全为1,里面全为0。 [[1 1 1 1 1 1 1 1 1 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 1 1 1 1 1 1 1 1 1]]
编写程序,创建下列10*10的数组,数组边界全为1,里面全为0。 [[1 1 1 1 1 1 1 1 1 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 1 1 1 1 1 1 1 1 1]]
编写程序,创建下列10*10的数组,数组边界全为1,里面全为0。 [[1 1 1 1 1 1 1 1 1 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 1 1 1 1 1 1 1 1 1]] 提示:可以先创建全为0或者全为1的数组,再通过索引和切片机制进行修改
编写程序,创建下列10*10的数组,数组边界全为1,里面全为0。 [[1 1 1 1 1 1 1 1 1 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 0 0 0 0 0 0 0 0 1] [1 1 1 1 1 1 1 1 1 1]] 提示:可以先创建全为0或者全为1的数组,再通过索引和切片机制进行修改
对信码1000100100001000011000011进行HDB3编码,结果可能是( )。 A: -1 0 0 0 +1 0 0 -1 0 0 0 -V +1 0 0 0 +V -1 +1 -B 0 0 -V +1 -1 B: +1 0 0 0 -1 0 0 +1 0 0 0 +V -1 0 0 0 -V +1 -1 +B 0 0 +V -1 +1 C: +1 0 0 0 -1 0 0 +1 0 0 0 +1 -1 0 0 0 -1 +1 -1 +1 0 0 +1 -1 +1 D: -1 0 0 0 +1 0 0 -1 0 0 0 +V +1 0 0 0 +V -1 +1 +B 0 0 -V +1 -1
对信码1000100100001000011000011进行HDB3编码,结果可能是( )。 A: -1 0 0 0 +1 0 0 -1 0 0 0 -V +1 0 0 0 +V -1 +1 -B 0 0 -V +1 -1 B: +1 0 0 0 -1 0 0 +1 0 0 0 +V -1 0 0 0 -V +1 -1 +B 0 0 +V -1 +1 C: +1 0 0 0 -1 0 0 +1 0 0 0 +1 -1 0 0 0 -1 +1 -1 +1 0 0 +1 -1 +1 D: -1 0 0 0 +1 0 0 -1 0 0 0 +V +1 0 0 0 +V -1 +1 +B 0 0 -V +1 -1
1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1
1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1
已知逻辑函数式为 F = A B + B C,可列出真值表如表2中的是( ) A B C ① ② ③ ④ 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1
已知逻辑函数式为 F = A B + B C,可列出真值表如表2中的是( ) A B C ① ② ③ ④ 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1
1⊙1⊙1⊙1⊙0⊙0⊙0⊙0等于?() A: 0⊙0⊙0⊙1 B: 1⊕1⊕1⊕1 C: 1⊙0⊙0⊙1 D: 1⊕1⊙0⊙0
1⊙1⊙1⊙1⊙0⊙0⊙0⊙0等于?() A: 0⊙0⊙0⊙1 B: 1⊕1⊕1⊕1 C: 1⊙0⊙0⊙1 D: 1⊕1⊙0⊙0