一般应力状态下垂直于x轴的面上y方向的切应变为( )。 A: γxy=τxy/G B: γxy=(τxy+τyz+τzx)/3/G C: γxy=[τxy+μ(τyz+τzx)]/G D: γxy=[τxy-μ(τyz+τzx)]/G
一般应力状态下垂直于x轴的面上y方向的切应变为( )。 A: γxy=τxy/G B: γxy=(τxy+τyz+τzx)/3/G C: γxy=[τxy+μ(τyz+τzx)]/G D: γxy=[τxy-μ(τyz+τzx)]/G
单圆曲线的主点为( )。 A: ZY、QZ、YZ; B: JZY、YZ; C: ZQZ、YZ。
单圆曲线的主点为( )。 A: ZY、QZ、YZ; B: JZY、YZ; C: ZQZ、YZ。
下列选型中的逻辑式等价于“xy+yz+xz”的是:( )。 A: x(y⊕z) + yz B: xy + yz C: yz + xz D: xy + xz
下列选型中的逻辑式等价于“xy+yz+xz”的是:( )。 A: x(y⊕z) + yz B: xy + yz C: yz + xz D: xy + xz
YZ为()电动机。
YZ为()电动机。
用UG创建的YZ平面草图中YZ坐标怎么用XY显示
用UG创建的YZ平面草图中YZ坐标怎么用XY显示
设方程\(\sin z - xyz = 0\)确定函数\(z=z(x,y)\),则\( { { \partial z} \over {\partial x}}=\) A: \( { { yz} \over {\cos z + xy}}\) B: \( { { yz} \over {xy-cos z }}\) C: \( { { yz} \over {\cos z - xy}}\) D: \(- { { yz} \over { xy+cos z }}\)
设方程\(\sin z - xyz = 0\)确定函数\(z=z(x,y)\),则\( { { \partial z} \over {\partial x}}=\) A: \( { { yz} \over {\cos z + xy}}\) B: \( { { yz} \over {xy-cos z }}\) C: \( { { yz} \over {\cos z - xy}}\) D: \(- { { yz} \over { xy+cos z }}\)
u=xy²+yz²+zx²
u=xy²+yz²+zx²
设方程\({e^z} - xyz = 0\)确定函数\(z=z(x,y)\),则\( { { \partial z} \over {\partial x}}=\) A: \( { { yz} \over { { e^z} - xy}}\) B: \(- { { yz} \over { { e^z} - xy}}\) C: \( { { yz} \over { { e^z} +xy}}\) D: \(- { { yz} \over { { e^z}+xy}}\)
设方程\({e^z} - xyz = 0\)确定函数\(z=z(x,y)\),则\( { { \partial z} \over {\partial x}}=\) A: \( { { yz} \over { { e^z} - xy}}\) B: \(- { { yz} \over { { e^z} - xy}}\) C: \( { { yz} \over { { e^z} +xy}}\) D: \(- { { yz} \over { { e^z}+xy}}\)
基本型号代表车辆种类,用汉语拼音字母表示,如YZ、RW、P、C等。YZ表示 。YW表示 。
基本型号代表车辆种类,用汉语拼音字母表示,如YZ、RW、P、C等。YZ表示 。YW表示 。
由方程\({z^3} - 3xyz = {a^3}\)所确定的隐函数\(z= f(x,y)\)的偏导数\( { { \partial z} \over {\partial x}} = \) A: \( { { yz} \over { { z^2} - xy}}\) B: \(- { { yz} \over { { z^2} - xy}}\) C: \( { { yz} \over { { z^2} +xy}}\) D: \(- { { yz} \over { { z^2}+xy}}\)
由方程\({z^3} - 3xyz = {a^3}\)所确定的隐函数\(z= f(x,y)\)的偏导数\( { { \partial z} \over {\partial x}} = \) A: \( { { yz} \over { { z^2} - xy}}\) B: \(- { { yz} \over { { z^2} - xy}}\) C: \( { { yz} \over { { z^2} +xy}}\) D: \(- { { yz} \over { { z^2}+xy}}\)