• 2022-05-27 问题

    $\int {{{\sin 2x} \over {1 + {{\sin }^4}x}}} {\rm{d}}x = $ A: $\arctan (\sin x) + C$ B: $\arctan ({\sin ^2}x) + C$ C: ${\arctan ^2}(\sin x) + C$ D: $ - {\arctan ^2}(\sin x) + C$

    $\int {{{\sin 2x} \over {1 + {{\sin }^4}x}}} {\rm{d}}x = $ A: $\arctan (\sin x) + C$ B: $\arctan ({\sin ^2}x) + C$ C: ${\arctan ^2}(\sin x) + C$ D: $ - {\arctan ^2}(\sin x) + C$

  • 2022-07-24 问题

    求微分方程[img=634x60]17da653955cf9e7.png[/img]的特解。 ( ) A: sin(2*x)/3 - cos(x) - cos(x)/3 B: sin(2*x)/3 - cos(x) - sin(x)/3 C: cos(2*x)/3 - cos(x) - sin(x)/3 D: sin(2*x)/3 - sin(x) - sin(x)/3

    求微分方程[img=634x60]17da653955cf9e7.png[/img]的特解。 ( ) A: sin(2*x)/3 - cos(x) - cos(x)/3 B: sin(2*x)/3 - cos(x) - sin(x)/3 C: cos(2*x)/3 - cos(x) - sin(x)/3 D: sin(2*x)/3 - sin(x) - sin(x)/3

  • 2022-05-31 问题

    曲线积分$$\int_{(0,0}^{(x,y)}(2x\cos y-y^2\sin x)dx+(2y\cos x-x^2\sin y)dy=$$ A: $y^2\cos x+x^2\cos y$ B: $x^2\cos x+y^2\cos y$ C: $x^2\sin y+y^2\sin x$ D: $x^2\sin x+y^2\sin y$

    曲线积分$$\int_{(0,0}^{(x,y)}(2x\cos y-y^2\sin x)dx+(2y\cos x-x^2\sin y)dy=$$ A: $y^2\cos x+x^2\cos y$ B: $x^2\cos x+y^2\cos y$ C: $x^2\sin y+y^2\sin x$ D: $x^2\sin x+y^2\sin y$

  • 2021-04-14 问题

    【单选题】设y=sin(cos(x)),求 结果为:(本题10.0分) A. cos(cos(x))*cos(x)+ sin(cos(x))*sin(x)^2 B. - cos(cos(x))*cos(x) - sin(cos(x))*sin(x)^2 C. - cos(cos(x))*cos(x)^2 - sin(cos(x))*sin(x)^2 D. - cos(cos(x))*cos(x) ^2- sin(cos(x))*sin(x)

    【单选题】设y=sin(cos(x)),求 结果为:(本题10.0分) A. cos(cos(x))*cos(x)+ sin(cos(x))*sin(x)^2 B. - cos(cos(x))*cos(x) - sin(cos(x))*sin(x)^2 C. - cos(cos(x))*cos(x)^2 - sin(cos(x))*sin(x)^2 D. - cos(cos(x))*cos(x) ^2- sin(cos(x))*sin(x)

  • 2022-06-01 问题

    求微分方程[img=143x21]17da5f14490e50e.png[/img]的通解,实验命令为(). A: dsolve(D2y-2*Dy+5*y=sin(2*x),x)ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x) B: dsolve('D2y-2*Dy+5*y=sin(2*x)','x')ans =cos(2*x)*(sin(4*x)/17 - cos(4*x)/68 + 1/4) - sin(2*x)*(cos(4*x)/17 + sin(4*x)/68) + C1*cos(2*x)*exp(x) - C2*sin(2*x)*exp(x) C: dsolve(D2y-2*Dy+5*y=sin(2*x),'x','y')ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x)

    求微分方程[img=143x21]17da5f14490e50e.png[/img]的通解,实验命令为(). A: dsolve(D2y-2*Dy+5*y=sin(2*x),x)ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x) B: dsolve('D2y-2*Dy+5*y=sin(2*x)','x')ans =cos(2*x)*(sin(4*x)/17 - cos(4*x)/68 + 1/4) - sin(2*x)*(cos(4*x)/17 + sin(4*x)/68) + C1*cos(2*x)*exp(x) - C2*sin(2*x)*exp(x) C: dsolve(D2y-2*Dy+5*y=sin(2*x),'x','y')ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x)

  • 2022-05-31 问题

    3. $(2x\cos y-{{y}^{2}}\sin x)dx+(2y\cos x-{{x}^{2}}\sin y)dy$的原函数是 ( ) A: ${{x}^{2}}\sin y-{{y}^{2}}\sin x+C$ B: ${{x}^{2}}\sin y+{{y}^{2}}\sin x+C$ C: ${{x}^{2}}\cos y-{{y}^{2}}\cos x+C$ D: ${{x}^{2}}\cos y+{{y}^{2}}\cos x+C$

    3. $(2x\cos y-{{y}^{2}}\sin x)dx+(2y\cos x-{{x}^{2}}\sin y)dy$的原函数是 ( ) A: ${{x}^{2}}\sin y-{{y}^{2}}\sin x+C$ B: ${{x}^{2}}\sin y+{{y}^{2}}\sin x+C$ C: ${{x}^{2}}\cos y-{{y}^{2}}\cos x+C$ D: ${{x}^{2}}\cos y+{{y}^{2}}\cos x+C$

  • 2022-06-19 问题

    求微分方程[img=364x55]17da65386dfd612.png[/img]的通解; ( ) A: - cos(2*x)*exp(x)*(x/4 - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x) B: (3*sin(2*x)*exp(x))/32 - (sin(6*x)*exp(x))/32 - cos(2*x)*exp(x)*(x/4 - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x) C: - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x) D: (sin(6*x)*exp(x))/32 - cos(2*x)*exp(x)*(x/4 - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x)

    求微分方程[img=364x55]17da65386dfd612.png[/img]的通解; ( ) A: - cos(2*x)*exp(x)*(x/4 - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x) B: (3*sin(2*x)*exp(x))/32 - (sin(6*x)*exp(x))/32 - cos(2*x)*exp(x)*(x/4 - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x) C: - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x) D: (sin(6*x)*exp(x))/32 - cos(2*x)*exp(x)*(x/4 - sin(4*x)/16) + C23*cos(2*x)*exp(x) + C24*sin(2*x)*exp(x)

  • 2022-06-17 问题

    函数\(y = { { \sin x} \over x}\)的导数为( ). A: \( { { x\cos x - \sin x} \over { { x^2}}}\) B: \( { { x\cos x + \sin x} \over { { x^2}}}\) C: \( { { x\sin x - \cos x} \over { { x^2}}}\) D: \( { { x\sin x + \cos x} \over { { x^2}}}\)

    函数\(y = { { \sin x} \over x}\)的导数为( ). A: \( { { x\cos x - \sin x} \over { { x^2}}}\) B: \( { { x\cos x + \sin x} \over { { x^2}}}\) C: \( { { x\sin x - \cos x} \over { { x^2}}}\) D: \( { { x\sin x + \cos x} \over { { x^2}}}\)

  • 2022-06-12 问题

    8. 下列不等式正确的是 A: $0\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}$ B: $0\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}$ C: $\int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}\lt 0\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}$ D: $\int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}\lt 0\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}$

    8. 下列不等式正确的是 A: $0\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}$ B: $0\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}$ C: $\int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}\lt 0\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}$ D: $\int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}\lt 0\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}$

  • 2022-07-26 问题

    17e0b849d3a4a3b.jpg,计算[img=19x34]17e0ab14a855463.jpg[/img]的实验命令为( ). A: syms x; f=diff((1+sin(x)^2)/cos(x),1)f=2*sin(x) + (sin(x)*(sin(x)^2 + 1))/cos(x)^2 B: f=diff((1+sinx^2)/cosx,1)f=1/2/x^(1/2)/(1-x)^(1/2) C: syms x;f=diff((1+sinx^2)/cosx,1)f=2*sin(x) + (sin(x)*(sin(x)^2 + 1))/cos(x)^2

    17e0b849d3a4a3b.jpg,计算[img=19x34]17e0ab14a855463.jpg[/img]的实验命令为( ). A: syms x; f=diff((1+sin(x)^2)/cos(x),1)f=2*sin(x) + (sin(x)*(sin(x)^2 + 1))/cos(x)^2 B: f=diff((1+sinx^2)/cosx,1)f=1/2/x^(1/2)/(1-x)^(1/2) C: syms x;f=diff((1+sinx^2)/cosx,1)f=2*sin(x) + (sin(x)*(sin(x)^2 + 1))/cos(x)^2

  • 1 2 3 4 5 6 7 8 9 10