【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=0 (3) 1/8
【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=0 (3) 1/8
设随机变量的密度函数f(x)如下:f(x)=x,0≤x<1;f(x)=2-x,1≤x<2;f(x)=0,其他.则(1)P(X≤1.5)=();(2)P(x>3)=();(3)F(2)=().
设随机变量的密度函数f(x)如下:f(x)=x,0≤x<1;f(x)=2-x,1≤x<2;f(x)=0,其他.则(1)P(X≤1.5)=();(2)P(x>3)=();(3)F(2)=().
设f(x)为连续函数,则等于() A: f(2)-f(0) B: 1/2[f(11)-f(0)] C: 1/2[f(2)-f(0)] D: f(1)-f(0)
设f(x)为连续函数,则等于() A: f(2)-f(0) B: 1/2[f(11)-f(0)] C: 1/2[f(2)-f(0)] D: f(1)-f(0)
设f(x)=(1/(1+x^2))+x^3∫(0到1)f(x)dx,求∫(0到1)f(x)dx
设f(x)=(1/(1+x^2))+x^3∫(0到1)f(x)dx,求∫(0到1)f(x)dx
下图所示机构自由度计算,( )是正确的。 A: mg src="http://p.ananas.chaoxing.com/star3/origin/cb07ca0fb12be985c301490389c1e187.jpg" B: F=3×7 –(2×9 + 2 – 2)– 2 = 1 C: F=3×7 –(2×9+ 2– 0)– 0 = 1 D: F=3×7 –(2×8+ 2 – 0)– 2 = 1 E: F=3×5 –(2×6+ 2– 0)– 0 = 1
下图所示机构自由度计算,( )是正确的。 A: mg src="http://p.ananas.chaoxing.com/star3/origin/cb07ca0fb12be985c301490389c1e187.jpg" B: F=3×7 –(2×9 + 2 – 2)– 2 = 1 C: F=3×7 –(2×9+ 2– 0)– 0 = 1 D: F=3×7 –(2×8+ 2 – 0)– 2 = 1 E: F=3×5 –(2×6+ 2– 0)– 0 = 1
设f''(x)在[0,2]连续,且f(0)=1,f(2)=3,f(2)=5,则。xf''(2x)dx=()。 A: 3 B: 2 C: 7 D: 6
设f''(x)在[0,2]连续,且f(0)=1,f(2)=3,f(2)=5,则。xf''(2x)dx=()。 A: 3 B: 2 C: 7 D: 6
1. 函数$y=\arctan x$在$x=0$处的$3$阶导数值为______ 。2. Legendre多项式${{L}_{n}}(x)=\frac{{{\text{d}}^{n}}[{{({{x}^{2}}-1)}^{n}}]}{\text{d}{{x}^{n}}},\ n=1,2,...$,则${{L}_{2}}(1)=$______ 。3. 若$f(x)={{x}^{2}}\cos x$,则${{f}^{(50)}}(0)=$______ 。
1. 函数$y=\arctan x$在$x=0$处的$3$阶导数值为______ 。2. Legendre多项式${{L}_{n}}(x)=\frac{{{\text{d}}^{n}}[{{({{x}^{2}}-1)}^{n}}]}{\text{d}{{x}^{n}}},\ n=1,2,...$,则${{L}_{2}}(1)=$______ 。3. 若$f(x)={{x}^{2}}\cos x$,则${{f}^{(50)}}(0)=$______ 。
假设F(x)是随机变量X的分布函数,则不能有结论( )。 A: 若F(a)=0,则对任意X≤a有F(x)=0 B: 若F(a)=1,则对任意X≥a有F(x)=1 C: 若F(a)=1/2,则Ρ{X≤a}=1/2 D: 若F(a)=1/2,则Ρ{X≥a}=1/2
假设F(x)是随机变量X的分布函数,则不能有结论( )。 A: 若F(a)=0,则对任意X≤a有F(x)=0 B: 若F(a)=1,则对任意X≥a有F(x)=1 C: 若F(a)=1/2,则Ρ{X≤a}=1/2 D: 若F(a)=1/2,则Ρ{X≥a}=1/2
已知函数f(x)=ax+a-x(a>0且a≠1),且f(1)=3,则f(0)+f(2)的值是( ) A: 7 B: 8 C: 9 D: 10
已知函数f(x)=ax+a-x(a>0且a≠1),且f(1)=3,则f(0)+f(2)的值是( ) A: 7 B: 8 C: 9 D: 10
已知函数f(x)=1/(2^x-1)+1/2,证明当x>0时,f(x)>0
已知函数f(x)=1/(2^x-1)+1/2,证明当x>0时,f(x)>0