设n=n1n2,(n1,n2)=1,n1≥1,n2≥1,则φ(n)=φ(n1)φ(n2).若n=n1n2,n1≥1,n2≥1,则φ(n)=φ(n1)φ(n2)?
举一反三
- 下面N×N的笛卡尔积的子集中,哪些可以构成函数? A: {(n1,n2) | n1,n2∈N and n1+n2 <10} B: {(n1,n2) | n1,n2∈N and n2 = n1^2} C: {(n1,n2) | n1,n2∈N and n1 = n2^2} D: {(n1,n2) | n1,n2∈N and n2为小于n1的素数个数}
- 对于给定的正数a(0〈a〈1),设za,χ2a(n),ta(n),Fa(n1,n2)分别是标准正态分布,χ2(n),t(n),F(n1,n2)分布的上a分位点,则下面的结论中不正确的是() A: z(n)-z(n) B: χ(n)=-χ(n) C: t(n)=-t(n) D: F(n,n)=1/F(n,n)
- 设`\n`阶方阵`\A`满足`\|A| = 2`,则`\|A^TA| = ,|A^{ - 1}| = ,| A^ ** | = ,| (A^ ** )^ ** | = ,|(A^ ** )^{ - 1} + A| = ,| A^{ - 1}(A^ ** + A^{ - 1})A| = `分别等于( ) A: \[4,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] B: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n + 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] C: \[4,\frac{1}{2},{2^{n + 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\] D: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\]
- 下面的关系哪些构成函数.(1){(n1,n2)|n1,n2∈N,n1+n2<10};(2){(n1,n2)|n1,n2∈R,n2=n12};(3){(n1,n2)|n1,n2∈R,n22=n1).
- 请问如下算法运行完之后n,n1,n2分别是多少? var n1=10, n2=20; n = n1++; n = ++n1; n = n2--; n = --n2; A: n=18, n1=12, n2=18 B: n=11, n1=11, n2=19 C: n=12, n1=12, n2=18 D: n=19, n1=11, n2=19