• 2022-05-30
    若n∈Z,在①sin(nπ+π3),②sin(2nπ±π3),③sin[nπ+(−1)nπ3)],④cos[2nπ+(−1)nπ6]中,与sinπ3相等的是(  )
  • ①sin(nπ+π3)=±sinπ3=±32,②sin(2nπ±π3)=±sinπ3=±32;③sin[nπ+(−1)nπ3)]=sinπ3=32cos[2nπ+(−1)nπ6]=cosπ6=32所以③④满足题意,故选B

    内容

    • 0

      函数sin⁡z在z_0=0展开成的泰勒级数是 A: ∑_(n=0)^∞▒z^n/n! B: ∑_(n=0)^∞▒〖(-1)^n z^(n+1)/(n+1)〗 C: ∑_(n=0)^∞▒〖(-1)^n z^(2n+1)/((2n+1)!)〗 D: ∑_(n=0)^∞▒〖(-1)^n z^2n/((2n)!)〗

    • 1

      序列x(n) = sin(3πn/4) + cos(0.5πn)是周期序列。 A: 正确 B: 错误

    • 2

      Which one of the following sequences has a finite limit? A: $\ln(n),\;n=1,2,\cdots$ B: $\ln(\sin(n)),\;n=1,2,\cdots$ C: $\sqrt{n^2-1}-n^{1/3},\;n=1,2,\cdots$ D: $ \sin\frac{1}{n},\;n=1,2,\cdots$

    • 3

      求方程\(x = \cos x\)根的牛顿迭代公式是 。 A: \({x_{n + 1}} = {x_n} - { { {x_n} - \cos {x_n}} \over {1 + \sin {x_n}}},n = 0,1,2 \cdots \) B: \({x_{n + 1}} = {x_n} + { { {x_n} - \cos {x_n}} \over {1 + \sin {x_n}}},n = 0,1,2 \cdots \) C: \({x_{n + 1}} = {x_n} - { { {x_n} - \sin {x_n}} \over {1 + \sin {x_n}}},n = 0,1,2 \cdots \) D: \({x_{n + 1}} = {x_n} - { { {x_n} - \cos {x_n}} \over {1 + \cos{x_n}}},n = 0,1,2 \cdots \)

    • 4

      {sin(n)/2n}数列不收敛。()