有[tex=0.5x1.0]BhZ+18hz9Lz5rDhFQ34M8A==[/tex]个数字,其中3个1,2个2,1个3,求能组成4位数的个数。
举一反三
- 从供选择的答案中选出填入叙述中的方框内的正确答案计算非同构的根树的个数(1) 2 个顶点非同构的根树有 [tex=2.143x2.429]rVbjoKgaBYChmT2nPEBA4Q==[/tex] 个(2) 3 个顶点非同构的根树有 [tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex] 个(3) 4 个顶点非同构的根树有 [tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex] 个(4) 5 个顶点非同构的根树有 [tex=2.214x2.429]ZPUE0nZuXRHoore7NT++rQ==[/tex] 个供选择的答案[tex=6.071x1.286]GZbiT2P8T8KVyVUEWQpYyjIiVTkGekbnZrmhPI/Gp54=[/tex]:① 1; ② 2; ③ 3; ④ 4; ⑤ 5; ⑥ 6; ⑦ 7; ⑧ 8; ⑨ 9; ⑩ 10
- 从1到300的整数中(1) 同时能被3,5和7这3个数整除的数有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个。(2) 不能被3,5,也不能被7整除的数有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个。(3) 可以被3整除,但不能被5和7整除的数有[tex=2.143x2.429]n2XHaW2pOoCvhs6v5jEJTQ==[/tex]个。(4) 可被3或5整除,但不能被7整除的数有[tex=2.214x2.429]ZPUE0nZuXRHoore7NT++rQ==[/tex]个。(5) 只能被3、5 和7之中的一个数整除的数有[tex=2.143x2.429]FTiTnGlnpZnzWfdrN7PpSw==[/tex]个。供选择的答案[tex=5.571x1.214]qnnHnOo38KaEBuTsFaIaxg==[/tex]:①2;②6;③56;④68;⑤80;⑥102;⑦120;⑧124;⑨138;⑩162。
- 箱中装有 6 个球,其中红球 1 个,白球 2 个,黑球 3 个. 现从箱中随机地取出 2 个球,设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 为取出的红球个数, [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 为取出的白球个数.求[tex=4.357x1.357]i+DVPOZZfbtwzlk7qK4ILswxUyhq/D0S0zlG9E3ZL0o=[/tex]
- 有6个数字,其中三个1,两个2,一个3,求能组成四位数的个数。
- 由[tex=0.5x1.0]8C7DKsr6nhrfCdsmGxO88g==[/tex]个命题变元[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]和[tex=0.5x1.0]jedlXyMYwmfVwxRj2j9sSw==[/tex]组成的不等值的命题公式的个数有( )。 A: 2 B: 4 C: 8 D: 16