• 2022-05-30
    函数 $y=2sinx + x^2 $在横坐标为$x=0 $点处的切线方程和法线方程分别是
    A: 切线: $2x-y=0$,法线: $x+2y=0$
    B: 切线: $2x+y=0$,法线: $x-2y=0$
    C: 切线: $x-2y=0$,法线: $2x+y=0$
    D: 切线: $x+2y=0$,法线: $2x-y=0$
  • A

    举一反三

    内容

    • 0

      9. $y=\log_x 2$的反函数为 A: $y=2^{1/x},x >0$ B: $y=2^{x},x >0$ C: $y=2^{1/x}, x \neq 0$ D: $y=2^{1/x},x >0, x \neq 1$

    • 1

      分段函数:[img=203x91]17de5f2f296a7ac.jpg[/img],下面程序段中正确表达的是 。 A: If x >; =2 Then y = 3ElseIf x >; =1 Then y = 2ElseIf x >; =0 Then y = 1Else y = 0End If B: If x <; 0 Then y = 0If x <; 1 Then y = 1If x <; 2 Then y = 2If x >;= 2 Then y = 3 C: If x >;= 2 Then y = 3If x >;= 1 Then y = 2If x >; 0 Then y = 1If x <; 0 Then y = 0 D: If x <; 0 Then y = 0ElseIf x >; 0 Then y = 1ElseIf x >; 1 Then y = 2Else y = 3End If E: If x <; 0 Then y = 0If 0 <;= x <;1 Then y = 1If 1 <;= x <; 2 Then y = 2If x >;= 2 Then y = 3

    • 2

      4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$

    • 3

      能够完成如下函数计算的程序段是____. A: y=2*x+1;if(x!=0)if(x>0)y=5*x+20;elsey=0; B: if(x>=0)if(x>0)y=5*x+20;elsey=0;elsey=2*x+1; C: y=0;if(x>=0)if(x>0)y=5*x+20;elsey=2*x+1; D: y=2*x+1;if(x>0)y=5*x+20;elsey=0;

    • 4

      过曲线[img=134x23]1803d342e04c06f.png[/img]上的点(0,1)处的法线方程为 ( ) A: 2x - y + 1 = 0 B: x - 2y + 2 = 0 C: 2x - y - 1 = 0 D: x + 2y - 2 = 0