Ti为增环公差,Tj为减环公差,M为增环数目,N为增环数目,那么,封闭环的公差为( )。
A: [img=34x50]180376f2fe7b60e.jpg[/img]
B: [img=84x49]180376f30978758.jpg[/img]
C: [img=84x49]180376f31462e72.jpg[/img]
D: [img=83x49]180376f31f20fd3.jpg[/img]
A: [img=34x50]180376f2fe7b60e.jpg[/img]
B: [img=84x49]180376f30978758.jpg[/img]
C: [img=84x49]180376f31462e72.jpg[/img]
D: [img=83x49]180376f31f20fd3.jpg[/img]
举一反三
- ΣTi为所有增环公差之和,ΣTj为所有减环公差之和,那么,封闭环公差为()。 A: ΣTi B: ΣTj C: ΣTi +ΣTj D: ΣTi—ΣTj
- ΣTi为所有增环公差之和,ΣTj为所有减环公差之和,那么,封闭环公差为() A: Ti B: Tj C: Ti+Tj D: TiTj
- X~N(1,1), 密度函数为[img=37x25]18038fe689205b5.png[/img], 分布函数为F(x), 则( ) A: [img=198x25]18038fe690a03ee.png[/img] B: [img=101x25]18038fe69af96aa.png[/img] C: [img=67x25]18038fe6a3b8e5b.png[/img][img=118x25]18038fe6ab93d6f.png[/img] D: F(x)=F(-x)
- 设X的密度函数为f(x),分布函数为F(x),并且f(x)=f(-x)。那么对任意给定的a>0都有 A: [img=170x49]18038fe676863cb.png[/img] B: [img=176x49]18038fe680a68a4.png[/img] C: F(a)=F(-a) D: F(-a)=2F(a)-1
- 设X的密度函数为f(x),分布函数为F(x),且f(x)是偶函数,则有 A: [img=235x53]1803b3ba8e4e24a.png[/img] B: [img=248x66]1803b3ba9822ce1.png[/img] C: F(−x)= F(x) D: F(−x)=2F(x)−1