• 2022-05-29
    假设[tex=3.857x1.357]LcP1PMCFDzwj9dQcbHauwCGSR8eOCoXQu1eMmdHOdSU=[/tex]个人玩“单人出局”的游戏确定下一次谁买饮料,[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个人同时掷均匀的硬币,每人一个。如果除了一个以外其余所有硬币的结果都相同,那么这个掷出不同结果的人将买饮料。否则,这些人再次掷硬币,直到出现一个硬币与其他所有的硬币结果不同为止。第[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]次掷硬币时,这个人确定下来的概率是多少?
  • 解:[tex=4.857x1.5]6GtUIQLQf0fn6k1W6yyZxvVFzHg07FsVIcoNvwkqSSg=[/tex],其中[tex=4.286x1.5]Q95bImsYWcyvG4mMtjOjZA==[/tex]

    举一反三

    内容

    • 0

      甲掷硬币 [tex=1.929x1.143]aJigoMJPQig1KIbQpW0DPw==[/tex] 次,乙掷 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次,求甲掷出的正面数比乙掷出的正面数多的概率.

    • 1

      设甲掷均匀硬币[tex=2.286x1.286]pTa8nuFTP5HuDpOSco+Vtg==[/tex]次,乙掷[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]次,求甲指出正面次数多于乙掷出正面次数的概率 .

    • 2

      使用切比雪夫不等式找出一个均匀的硬币被掷[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次时,出现头像在下的次数与平均值的偏差超过[tex=2.0x1.357]EQ5TESb9+NuyNax/7exqWA==[/tex]的概率的上界。

    • 3

      掷[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]次均匀硬币,求出现正面次数多于反面次数的概率 .

    • 4

      袋中装有 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]只正品硬币、[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]只次品硬币(次品硬币的两面均印有国徽),在袋中任取一只,将它投掷[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]次,已知每次都得到国徽,问这只硬币是正品的概率为多少?