设函数y=sin(2x2+1),求导数。
举一反三
- 【简答题】一、学习目标: 1 、复合函数的求导法则. 二、教材阅读: 1 、复合函数的求导法则 一般地,若y=f(u),u=g(x),则 y ′ x = 。 三、基础作业: 1 、 求下列函数的导数: (复合函数求导) (1 ) y = sin 3 x ; (2) y = .
- 函数\(y = \sin {1 \over x}\)的导数为( ). A: \({1 \over { { x^2}}}\sin {1 \over x}\) B: \( - {1 \over { { x^2}}}\sin {1 \over x}\) C: \( - {1 \over { { x^2}}}\cos {1 \over x}\) D: \({1 \over { { x^2}}}\cos {1 \over x}\)
- 函数\(y<br/>= 1\)与\(y<br/>= {\sin ^2}x + {\cos ^2}x\)是相同的函数。( )
- 求函数\(y = \sin (x + 1)\)的导数______.______
- 函数\(y = { { \sin x} \over x}\)的导数为( ). A: \( { { x\cos x - \sin x} \over { { x^2}}}\) B: \( { { x\cos x + \sin x} \over { { x^2}}}\) C: \( { { x\sin x - \cos x} \over { { x^2}}}\) D: \( { { x\sin x + \cos x} \over { { x^2}}}\)