画出单位圆点列图
A: ListPlot[Table[{Cos[x],Sin[x]},{x,0,2Pi,0.2}]]
B: ListPlot[Table[{Cos[x],Sin[x]},{x,0,2Pi,0.2},AspectRatio → Automatic]]
C: ListPlot[Table[{Cos[x], Sin[x]},{x,0,2Pi,0.2}],AspectRatio → Automatic]
D: ListPlot[Table[{Cos[x],Sin[x]},{x,0,2Pi,0.2}], Joined→True]
A: ListPlot[Table[{Cos[x],Sin[x]},{x,0,2Pi,0.2}]]
B: ListPlot[Table[{Cos[x],Sin[x]},{x,0,2Pi,0.2},AspectRatio → Automatic]]
C: ListPlot[Table[{Cos[x], Sin[x]},{x,0,2Pi,0.2}],AspectRatio → Automatic]
D: ListPlot[Table[{Cos[x],Sin[x]},{x,0,2Pi,0.2}], Joined→True]
举一反三
- 在一个图形窗口同时绘制[0,2π]的正弦曲线、余弦曲线,不可以使用命令( )。 A: x=(0:0.01:2*pi)'; Y=[sin(x),cos(x)]; plot(x,Y); B: x=(0:0.01:2*pi);Y=[sin(x);cos(x)];plot(x,Y); C: ezplot(@(x)sin(x),@(x)cos(x),[0,2*pi]) D: ezplot(@(x)sin(x),[0,2*pi]),hold on ,ezplot(@(x)cos(x),[0,2*pi])
- (3分)<br/>在一个图形窗口同时绘制[0,2π]的正弦曲线、余弦曲线,可以使用命令( )。 A: x=(0:0.01:2*pi)';<br/>Y=[sin(x),cos(x)]; plot(x,Y); B: x=(0:0.01:2*pi);<br/>Y=[sin(x);cos(x)]; plot(x,Y); C: fplot(@(x)sin(x),@(x)cos(x),[0,2*pi]) D: fplot(@(x)sin(x),cos(x),[0,2*pi])
- 函数绘图命令使用正确的是 A: fplot('sin(x)',[0,2*pi],'r') B: fplot('x*sin(x)',[0,2*pi],r) C: fplot(‘[sin(x),cos(x)]’,[0,2*pi]) D: plot('x^2',[0,2*pi],'r')
- 8. 下列不等式正确的是 A: $0\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}$ B: $0\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}$ C: $\int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}\lt 0\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}$ D: $\int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}\lt 0\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}$
- 【单选题】设y=sin(cos(x)),求 结果为:(本题10.0分) A. cos(cos(x))*cos(x)+ sin(cos(x))*sin(x)^2 B. - cos(cos(x))*cos(x) - sin(cos(x))*sin(x)^2 C. - cos(cos(x))*cos(x)^2 - sin(cos(x))*sin(x)^2 D. - cos(cos(x))*cos(x) ^2- sin(cos(x))*sin(x)