举一反三
- 设[tex=5.5x1.357]jO6lZeZZ3OdVBdz43/a9oQ==[/tex],[tex=0.857x1.0]9FikB2YJlXD9Uda+jSZ+aQ==[/tex]上有如下两个关系:[p=align:center][tex=7.857x1.357]pd9l8znrdYExN6Olk0rlGnNU6qc4HWiNE29Cv4d3un4=[/tex]或[tex=3.071x1.357]40x9aRMI5okS8j0R1kO/bQ==[/tex][p=align:center][tex=8.357x1.357]KL8XkO3xClX+ZKoVjS47eSwU3UUzbwIBmTUU5XJTM/0=[/tex]求下列复合关系.(1)[tex=2.786x1.214]XzRNdcOzSrvLVZHLjp7LMD71fRT67VBA6Zd1uTtpBa8=[/tex];(2)[tex=2.786x1.214]h+sgJJ+hO7O6atHnTmbPI3Q7/1cgdmNXsz+WDhMAsds=[/tex];(3)[tex=4.357x1.214]XzRNdcOzSrvLVZHLjp7LMPh7lTZBxYOZ3aFX2Q3W6CE=[/tex].
- 已知方程[p=align:center][tex=3.929x1.429]DIsL91fVx3Xf9PbWWd63yofW17dCb4s4C7V3FuiNnG0=[/tex] (1')设[p=align:center][tex=9.929x1.357]rSMDXgVSvQA9hOwY+2eF9MeZA/Owm2FwFOdIHHr/PT6hBypLq16D6GtwI89wsyfi[/tex](2') 为满足方程 (1')的单值函数.(1) 有多少单值函数(2') 满足方程 (1') ?(2) 有多少单值连续函数(2')满足方程(1')?(3) 设:( i ) [tex=3.071x1.357]vpl1JM/kznexLcADRvqK8A==[/tex] ;( ii )[tex=3.071x1.357]mK6GPtzVfR2nkQpY1EhLhw==[/tex], 则有多少单值连续函数 (2')满足方程(1') ?
- 设矩阵[p=align:center][tex=22.143x3.643]+HNIZcMaSzNwCe0LO7bsUq/nNqiD9uPVTX2/0HTi4M1ZunAEz7qfA0Rd4ovBDZfbF0GGptIGukHKOpbU4T80nTzErVwKYTs47PXy7I1XE++qtUmsh208vGDr7MXpYVMuue4tfvhHRJLpbtyk1c9gflSH5Tkz0UMsPjui7wPzKBU08/vB+N4sKYnD/Q0clHeQK7pT2y7o9KK3BmOLD7xVrZgRj2iFXMh2GeWPZ6MQh2cc/+VI9kCbffCxY/5NFhhEg5peWRqbWgbcZiOGAvr4nJHWN3qjueDxOqTvbDaTM3I=[/tex](1) 求 [tex=3.357x1.214]03ql8P+0CvRd0jLgTuf2VbT/wkB2igrddY7J5Strl0NU0hh6vIeN8jScC63B9GnL[/tex](2) 解矩阵方程 [tex=5.0x1.214]zvhQGTB3bj6p1+G/NgyQR3d8RUTq+KWJyJoscsNb5yO4fheydfGUyOSeXl9e1m/p[/tex] 求 [tex=1.286x1.214]J9ANNFCyxpObx83w0Vdt38yleCTlTu8vvnAXkiBZ7K0=[/tex](3)解矩阵方程 [tex=11.786x1.357]hbnRNbrpLcfkctuGfn+sleqQROrTrwqqWds6OPLk7Wdn4vtQb1+Muj1i2/7A1FkoB4neXMMMBk0saIAf9uWaRm+qUEsJaMS5QeVJeBYZxhkTnaWiAitNyge3msYgxeJV[/tex] 求 [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex].
- 如图 5-7 所示电路, 已知 [tex=17.857x1.214]Hwi4HIxfoF8gVspFkHNxlBG26CWxhoG15dyRY7K0OdljjhjCXQPyybKnQnvpGdcGWyEsJn+6Zq/e3islHQnL5ROf76c2bkG3rIocxwJ6OCfLr3jag3OEY1naZaomURBrQ75sXnqByazl4cdVcq6TSA==[/tex] 试求 (1) 总等放电容 [tex=1.643x1.286]+99njrLyWWdV2wAYUggq+3hhEyVvysOM2cJWt2uK8hw=[/tex]。(2) 每个电容上的电量 (3) 总电量[p=align:center][img=208x141]17dd6fdcd0b4b63.png[/img]
- 掷一枚均匀骰子,直到出现的点数小于3为止,记抛掷的次数为X,则以下结果正确的是 A: P(X=2)=2/9 B: P(X≥3)=4/9 C: P(X≤3)=19/27 D: P(X=1)=2/3 E: P(X≤2)=3/4 F: P(X=1)=1/2 G: P(X=2)=1/4 H: P(X<3)=7/8
内容
- 0
求下列集合的基数.[p=align:center][tex=8.571x1.357]/jyxuWdRmCaD2gIzWUCn0NcZgNqXgsrp1zIjgThFH6o=[/tex].
- 1
求下列集合的基数.[p=align:center][tex=7.143x1.357]fSs+0ueYSF2NGxqlxqYOVtrEK72s200N1Ricevd6TBw=[/tex].
- 2
设随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的密度函数为[p=align:center][tex=11.286x3.643]BTeyLq0XT+/djvCqLM2VYcbQFc1gsIBqF45L/UpLqn634B/7NR3oOI9yXzm+bQg0reDqwSGoE8+dH08bPemQ4Hml+Jx+kyPdUPmw+4FemqU=[/tex]求: (1) 常数 [tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex].(2) 常数 [tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex] , 使 [tex=9.929x1.286]g+trMWLSP55E3i2fetUsrgVglPLZbIa9txf6GCXRv0Y=[/tex] . (3) 分布函数 [tex=2.071x1.286]QnT5Ukq2Ukk4CB2YYrq4eQ==[/tex].
- 3
证明 设[tex=2.929x1.357]f8vXhXZkntbtcn5YtNszyA==[/tex]为循环群. (1)如果[tex=3.143x1.357]+ffGqEoCaO1XtD5rcTB2lg==[/tex],则[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的全部子群为[p=align:center][tex=10.0x1.571]ASO79Lx7XorIzXfD+OkCX2aw3jZQI9gX9hIKxPpEoHVfIf8jaMNsVAI3GKreTubJeTAOApOyglKnt7BLTl+WYZ4hCtb/6NuRQOp+iQCSiHw=[/tex].(2)如果[tex=3.0x1.357]o/dVgihcop3NMKmdwvgkeQ==[/tex]则[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的全部子群为[p=align:center][tex=3.857x1.571]ho2B7oQoeaJgTzqz5bQYfbOIXX6Nns7PiwvcUM/c6htf+U69GXScKgmyziwSNCkFVSjjsPHGOR5r/3zKWR4nMg==[/tex] 为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 的正因子 .[p=align:center][br][/br][p=align:center]
- 4
接受语言{任何不是0开头的奇正整数的集合} 的 CFG文法为 ( ) A: S→J|ABJ, B→0B|AB|e, A→J|2|4|6|8, J→1|3|5|7|9 B: S→J|ABJ, B→0B|AB|e, A→J|0|2|4|6|8, J→1|3|5|7|9 C: S→J|ABJ, B→0B|AB, A→J|2|4|6|8, J→1|3|5|7|9 D: S→J|ABJ, B→0B|e, A→J|2|4|6|8, J→1|3|5|7|9