f(t)=2sin(2t)+5cos(3t)的周期是( )
A: [img=20x18]18035676b35aed3.png[/img]
B: [img=11x14]18035676bbe5195.png[/img]
C: 2
D: [img=11x39]18035676c3f2a23.png[/img]
A: [img=20x18]18035676b35aed3.png[/img]
B: [img=11x14]18035676bbe5195.png[/img]
C: 2
D: [img=11x39]18035676c3f2a23.png[/img]
举一反三
- 求微分方程[img=634x60]17da653955cf9e7.png[/img]的特解。 ( ) A: sin(2*x)/3 - cos(x) - cos(x)/3 B: sin(2*x)/3 - cos(x) - sin(x)/3 C: cos(2*x)/3 - cos(x) - sin(x)/3 D: sin(2*x)/3 - sin(x) - sin(x)/3
- 连续信号 x(t) = cos t – 2sin 3t,该信号的周期等于( )。 A: [img=20x18]180311094c94fc7.png[/img] B: [img=38x25]1803110955ea1d4.png[/img] C: [img=79x25]180311095f2729c.png[/img] D: [img=11x14]1803110967156b3.png[/img]
- 求微分方程 [img=635x61]17da6537085dd29.png[/img] 的特解; ( ) A: (3*sin(5*x))/exp(2*x) B: exp(2*x) C: (3*sin(5*x)) D: (3*cos(5*x))/exp(2*x)
- 设\(z = f(x,y)\),\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({f'_x} \sin t+ 3{t^2}{f'_y}\) B: \({f'_x} \cos t+ {t^2}{f'_y}\) C: \({f'_x} \cos t+ 3{t^2}{f'_y}\) D: \({f'_y} \cos t+ 3{t^2}{f'_x}\)
- 求微分方程[img=269x55]17da6536a9fba07.png[/img]的通解; ( ) A: (C15*sin(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t) B: (C15*cos(2*t))/exp(3*t) - (C16*sin(2*t))/exp(3*t) C: (C15*cos(2*t))/exp(3*t) + (C16*cos(2*t))/exp(3*t) D: (C15*cos(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t)