已知线性规划标准形中的系数矩阵A为[img=163x51]1803c5f0aa80c2d.png[/img],对应的变量分别为x1,x2,...,x5,则基矩阵[img=67x51]1803c5f0b1d22e9.png[/img]对应的基变量是( )
A: x2,x3
B: x3,x4
C: x2,x4
D: x3,x5
A: x2,x3
B: x3,x4
C: x2,x4
D: x3,x5
举一反三
- 继续上题,为了程序编写简洁,要给数据框x中的6列重新命名为x1,x2,x3,x4,x5,x6,应该使用的命令是() A: ColNames(x) <- c("x1","x2","x3","x4","x5","x6") B: Names(x) <- c("x1","x2","x3","x4","x5","x6") C: colnames(x) <- c("x1","x2","x3","x4","x5","x6") D: colname(x) <- c("x1","x2","x3","x4","x5","x6")
- F(x1,x2,x3)= x 1 2 +2x 2 2 +5x 3 2 +2x 1 x 2 +2x 1 x 3 +6x 2 x 3 的标准形为()
- 求函数 f(x)=3*x1^2 + 2*x1*x2 + x2^2 − 4*x1 + 5*x2. 时,输入代码 >>fun = @(x)3*x(1)^2 + 2*x(1)*x(2) + x(2)^2 - 4*x(1) + 5*x(2); >>x0 = [1,1]; >>[x,fval] = fminunc(fun,x0); 其中fun的作用是:
- 设函数f(x)=(x2-6x+c1)(x2-6x+c2)(x2-6x+c3),集合M={x|f(x)=0}={x1,x2,x3,x4,x5}?N*,设c1≥c2≥c3,则c1-c3=( ) A: 6 B: 8 C: 2 D: 4
- 求函数 f(x)=3*x1^2 + 2*x1*x2 + x2^2 − 4*x1 + 5*x2. 时,输入代码 >>fun = @(x)3*x(1)^2 + 2*x(1)*x(2) + x(2)^2 - 4*x(1) + 5*x(2); >>x0 = [1,1]; >>[x,fval] = fminunc(fun,x0); 到matlab上运行一下,得到的结果,x是: