关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 公告:维护QQ群:833371870,欢迎加入!公告:维护QQ群:833371870,欢迎加入!公告:维护QQ群:833371870,欢迎加入! 2022-05-30 扩展库sklearn.svm中提供了线性支持向量机分类器LinearSVC、线性支持向量机回归器LinearSVR,基于libsvm的支持向量机分类器SVC、支持向量机回归器SVR,无监督异常值检测OneClassSVM,以及NuSVC和NuSVR。 扩展库sklearn.svm中提供了线性支持向量机分类器LinearSVC、线性支持向量机回归器LinearSVR,基于libsvm的支持向量机分类器SVC、支持向量机回归器SVR,无监督异常值检测OneClassSVM,以及NuSVC和NuSVR。 答案: 查看 举一反三 支持向量机属于广义线性分类器,只能进行进行线性分类。( ) 支持向量机的训练目的是为了获得线性分类器 支持向量机是一种对线性分类器的最优设计方法论。 支持向量机模型包括 A: 线性可分支持向量机 B: 线性支持向量机 C: 非线性可分支持向量机 D: 非线性支持向量机 关于SVM的描述正确的是:( ) A: 支持向量机模型定义在特征空间上的间隔最大的线性分类器 B: 支持向量机可以通过核技巧,这使之成为实质上的非线性分类器 C: 支持向量机的学习策略就是间隔最大化 D: 支持向量机训练时候,数据不需要归一化或者标准化