求图所示周期三角信号的傅里叶级数并画出频谱图。[img=347x137]17a564a6989bbeb.png[/img]
解:由图可知,[tex=1.643x1.357]Wfem9oxh0ZS7nZ3KGomKoQ==[/tex]为偶函数,故[tex=2.143x1.214]fbeA1YcPjDAvqe5rSa0Pnw==[/tex],且[tex=9.143x3.143]tHLdoaX6J1rkviYwGYKM9ex6AWP9Jz4y7wK+nhEKMQiAWUure4xlMMMkKzFJt3kQYTyfidVJCwgTSGgnbBpVre4vjAM06t3bjOvMCYz+Yg4=[/tex][tex=21.143x12.357]a0s3MH7cLIdmiBRR0YN060UjLk/G32QyePYn8f3x0CJ6tknlR/99N2AVY+86jEGrcH47HwapUFvBhX+Uq6uaCKKKU3mO1S9NKKvJ/dIKNoPcGPfUteoHWcn9NFxZlaG9oCE4E3JvKyfGppKN+SEzBwz10mYeVWHeqEvgII59ofkLj7zbu3oF56npdxefJKGuMoU0ge6vfFuAzlCWkzXEVJlZck5Jstuz4qmV3n+tlS8gZBZFHv1nb9k4WRC3LpgweGCK7zcOkdqLYa7hSz2arrnBS9LpjGjYcxP2UE1smKdXrwRwV3Nb4yLXZkqF0F3TB7QjoOVelP5BCRlR9CnZFQQVMMf7b02jdGo8qKndFWVqmOX3aVjfjRq/CFDAFCspI1Cq8pK4I5Z+0WcwwIkG/8W8qwMTZMeMgwaRiYb1gNUoBRGC93O2GPc6flRA3Xsj2TlEkqUcfY5FAHpTpSqCIqCR4g5vaotkAfafLkwGReyTVcPOaH7CAZoG/YUQbEAZ2ydAP8VNZKdhDaeQ/qMmd0CzIQAkS06ziI0mnD4gu7epnlkDnx62G4PqNg2UToht15Wl8zTeQAbNweJpRgmfdrTqcmMe3dRB8RtC+5NkifgokVShysUo2/1v7sRTRyLEiYqymCnhG08ypRyzO8qgukC3ucBWtqQgkvM5XaA/3TjA/3YCbzkpnzqbwiBW7JuxnihkbsPxYovBrOzV/Xx+OCVbxsbZBxWr7Myyo6uOtvQ/VoRrLTq5AULuoiy7PCdv[/tex][tex=9.643x2.643]U0e+SuOISb2sZsMY/WdjJ8z8hZy+DXAHi+HUdFcb3wLGhKawsRvCS1PYamYf2Dt/AOUiDZgB9dV5E3EZt9S89QyDuodTxmR1h2/Rvolm+WYe4Bwl9L8ha9iS45Dvmt+N[/tex]所以[tex=1.643x1.357]Wfem9oxh0ZS7nZ3KGomKoQ==[/tex]的傅里叶级数可表示为[tex=26.429x2.786]B6nR7zLx1tzkPyP7A9R/MfQEygZzKEEbYL3KWLxe0cs0JVbpVxuzJ+B68YkCfS/LeC1M6iQC2IwzI6QZ6/iKVbQHFWiO3Hj3MyHAFzq+aZBrIUh39fYYV6dQ+UWw7Ak4/SbI/Xs2B7OTwPlKaWyuyhOxxWc6K27II+RqZfMwDmwBgqp0yAw1fWesV2j/3ZhQ2ApxVliBcebP1yl7TvC7qLzHXmNTHWNMMBtVZXOJHPz4a1YkLfDtACIwtSwkKcB9[/tex],其中[tex=3.286x2.357]uABZ7XTeIKgQrd8HfqbJs8jzKn+NGCf1m96GSstP9hI=[/tex]其幅度谱如图所示。[img=212x134]17a565396923e59.png[/img]
举一反三
- 求题图所示的周期三角波的傅立叶级数,并绘制频谱图。[img=534x303]17ce9e57196c694.png[/img]
- 求图3-8(a)所示的周期性半波整流余弦脉冲信号及图3-8(b)所示的周期性半波整流正弦脉冲信号的傅里叶级数展开式。绘出频谱图并作比较,说明其差别所在。[img=508x169]17d575104b33371.png[/img]
- 利用周期性矩形脉冲与周期性三角形脉冲的傅里叶级数展开式(3-30)及式(3-38),求图3-10波形所示信号的傅里叶级数。[img=408x205]17d575890c0e721.png[/img]
- 求图示周期矩形信号的傅里叶级数(三角形式与指数形式)。[img=601x265]17a3e3d3cb26c67.png[/img]
- 求图中周期信号的傅里叶级数。[img=462x215]17a41110c70fcf6.png[/img]
内容
- 0
求图所示三角调幅信号的频谱。[img=366x367]17a4c95f0f8d94e.png[/img]
- 1
求下图所示周期信号的傅里叶变换并画出其频谱图。
- 2
已知连续周期信号 f (t) 的波形如图 3-58 所示。求指数型傅里叶级数; [img=496x170]17ae5c56171a2b3.png[/img]
- 3
基波周期为T的周期信号x(t)的复指数型傅里叶级数表示为[img=286x83]1803110fbcee2b6.jpg[/img],其中[img=38x29]1803110fc57ea57.png[/img]是傅里叶级数系数。
- 4
基波周期为T的周期信号x(t)的复指数型傅里叶级数表示为[img=286x83]1803243c2780ec0.jpg[/img],其中[img=38x29]1803243c30c5376.png[/img]是傅里叶级数系数。