现有两个微分式: dZ1=Y(3X2+Y2)dX+X(X2+2Y2)dY dZ2...1 积分,可以证明dZ2为全微分的应是:
举一反三
- 现有两个微分式: dZ1=Y(3X2+Y2)dX+X(X2+2Y2)dY dZ2=Y(3X2+Y)dX+X(X2+2Y)dY 式中dZ2代表体系的热力学量,Y,Z是独立变量。若分别沿Y=X与Y=X 2途径从始态X=0,Y=0 至终态X=1,Y=1 积分,可以证明dZ2为全微分的应是:
- 函数\(z = {x^y}\)的全微分为 A: \(dz = y{x^{y - 1}}dy + {x^y}\ln xdx\) B: \(dz = y{x^{y - 1}}dx + {x^y}dy\) C: \(dz = y{x^{y - 1}}dx + {x^y}\ln xdy\) D: \(dz = y{x^{y - 1}}dy + {x^y}dx\)
- 函数\(z = {e^ { { x^2} - 2y}}\)的全微分为 A: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dx +2{e^ { { x^2} - 2y}}dy\) B: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dx - 2{e^ { { x^2} - 2y}}dy\) C: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dy+ 2{e^ { { x^2} - 2y}}dx\) D: \(<br/>dz = 2x{e^ { { x^2} - 2y}}dy - 2{e^ { { x^2} - 2y}}dx\)
- 函数z=exy当x=1, y=1, Dx=0.15, Dy=0.1时的全微分dz= .
- 已知\(z = {x^2} + {y^2}\),则在\(\left( {2,1} \right)\)处的全微分dz = ( ) A: 8 B: 6 C: \(4dx + 2dy\) D: \(8dxdy\)