【单选题】【图片】
A. ln(2+sin2x)
B. ln2x
C. lnsin2x
D. ln(2+cos2x)
A. ln(2+sin2x)
B. ln2x
C. lnsin2x
D. ln(2+cos2x)
举一反三
- \( \int {\cos \ln xdx} = \)( ) A: \( {x \over 2}(\cos \ln x + \sin \ln x) + C \) B: \( {x \over 2}(\cos \ln x - \sin \ln x) + C \) C: \(- {x \over 2}(\cos \ln x + \sin \ln x) + C \) D: \(- {x \over 2}(\cos \ln x - \sin \ln x) + C \)
- $\int {{1 \over {3 + 5\cos x}}} dx = \left( {} \right)$ A: ${1 \over 4}\ln \left| {{{2\cos x + \sin x} \over {2\cos x - \sin x}}} \right| + C$ B: ${1 \over 4}\ln \left| {{{2\cos {x \over 2} + \sin {x \over 2}} \over {2\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ C: $\ln \left| {{{\cos {x \over 2} + \sin {x \over 2}} \over {\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ D: $\ln \left| {{{\cos x + \sin x} \over {\cos x - \sin x}}} \right| + C$
- 已知 \( y = \sin x + \ln 2 \),则 \( y' = \cos x + {1 \over 2} \)( ).
- 函数\(y = {2^x} + {x^2}\)的导数为( ). A: \({2^x} + \ln 2.2x\) B: \({2^x} + 2x\) C: \({2^x}\ln 2 + 2x\) D: \( { { {2^x}} \over {\ln 2}} + 2x\)
- 数学式 A: (e^(2*x)*Log(x)+x^2)/Sqr(Abs(Sinx^2-Cos2x)) B: (Exp(2*x)*Log(x)+x^2)/Sqr(Abs(Sin(x^2)-Cos(x)^2)) C: (Exp(2*x)*Ln(x)+x^2)/Sqr(Abs(Sin(x^2)-Cos(x)^2)) D: (e^(2*x)*Log(x)+x^2)/Sqr(Abs(Sin(x)^2-Cos(x)^2))