【单选题】命题“∀x∈R,sinx+1≥0”的否定是()(5.0分)
A. ∃x 0 ∈R,sinx 0 +1<0 B. ∀x 0 ∈R,sinx 0 +1<0 C. ∃x 0 ∈R,sinx 0 +1≥0 D. ∀x 0 ∈R,sinx 0 +1≤0
A. ∃x 0 ∈R,sinx 0 +1<0 B. ∀x 0 ∈R,sinx 0 +1<0 C. ∃x 0 ∈R,sinx 0 +1≥0 D. ∀x 0 ∈R,sinx 0 +1≤0
举一反三
- 【单选题】5.设f 0 (x)=sinx,f 1 (x)=f 0 ′(x),f 2 (x)=f 1 ′(x),...,f n +1 (x)=f n ′(x),n∈N,则f 2011 (x)等于() A. sinx B. -sinx C. cosx D. -cosx
- 设φ(x)二阶连续可导,φ(0)=0,则当φ(x)=()时,I=与路径无关,且() A: cosx,1 B: sinx,0 C: sinx,1 D: cosx,0
- lim(x→0)(sinx^2)/[(sinx)^2]求极限,x趋于0,
- 设y=sinx,则y(10)|x=0=() A: 1 B: -1 C: 0 D: 2n
- 设y=sinx,则y’|x=0等于______. A: 1 B: 0 C: -1 D: -2