举一反三
- 证明定理5 的逆,即:设[tex=1.857x1.357]QF8vxZyGYgv0Fua83iwDhg==[/tex]是次数大于零的多项式,如果对于任何 多项式[tex=4.143x1.357]jXxZMneg8YljyAKDckPdqQ==[/tex],由[tex=6.357x1.357]7oQUDUsfDA0XMBbIN/2LNbLVLVyrEv2RPJQjVwhQVD0=[/tex]可以推出[tex=4.571x1.357]uCgBq8XLCEzWYqB+sTVtnw==[/tex]或者[tex=4.143x1.357]6Hthb0/hjpqvdjFs+ojV1A==[/tex], 那么[tex=1.857x1.357]QF8vxZyGYgv0Fua83iwDhg==[/tex]是不可约多项式.
- 6. 证明: 设[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex]是次数大于零的多项式,如果对于任何多项式 [tex=4.429x1.357]xDE+DYVVlqrwETxnz6Xubg==[/tex] 由[tex=6.357x1.357]+3zmuKty1AhSMDB3tNdbXxLJRZTFKVq4xUmyZwpiyJg=[/tex]可以推出[tex=4.571x1.357]NaXhQuud9whTIdEia7cAy145H6cmmDHeiC85YWZqPkg=[/tex]或者[tex=4.571x1.357]yOyH9WGEdakx47yTMUJ/qAG7LUpVFYIOzNODeDvbQnM=[/tex]那么 [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex]是不可约多项式。
- 设 [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是次数大于零的多项式. 证明: 如果对于任何多项式 [tex=4.286x1.357]Txg9FRufl5MTdl37OkIC0Q==[/tex]由[tex=6.357x1.357]+3zmuKty1AhSMDB3tNdbXxLJRZTFKVq4xUmyZwpiyJg=[/tex]可以推出 [tex=4.571x1.357]NaXhQuud9whTIdEia7cAy145H6cmmDHeiC85YWZqPkg=[/tex] 或者[tex=4.571x1.357]BO8Qu1csAGeU8R6I1RCy3Q==[/tex],则 [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是不可约多项式.
- 证明:次数>0 且首项系数为 1 的多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是一个不可约多项式 的充分必要条件是,对任意多项式[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]必有(f(x), g(x))=1,或者对某一正整数[tex=6.0x1.357]bR39wf/Hz75eMrt08Xqk8wt4bXTUCgLbWgBjqC5Zmko=[/tex].
- 证明:次数大于0的首一多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是某一不可约多项式的方幂的充分必要条件是,对任意的多项式[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]或者有(f(x), g(x))=1[tex=6.786x1.357]LBShIAKXyumE73h8+CWE0g==[/tex],或者对某一正整数[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex],[tex=5.214x1.357]2b+0ZPIn+JhnqeNAq++wBM+CF08EAq9ClmGz91b+CDs=[/tex].
内容
- 0
证明:性质 2 的逆命题为真, 即设 [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是 [tex=2.0x1.357]beH6DnGK6LEsYI2cIHxhuQ==[/tex] 中一个次数大于零的多项式, 如果对于任意 [tex=2.143x1.357]21H6812iIz5aHLZtAeFhPA==[/tex] [tex=4.786x1.357]YImwQSIyZfz+bnW4vwzTGA==[/tex] 从 [tex=6.357x1.357]+3zmuKty1AhSMDB3tNdbXxLJRZTFKVq4xUmyZwpiyJg=[/tex] 可以推出 [tex=4.571x1.357]NaXhQuud9whTIdEia7cAy145H6cmmDHeiC85YWZqPkg=[/tex] 或者 [tex=4.571x1.357]yOyH9WGEdakx47yTMUJ/qAG7LUpVFYIOzNODeDvbQnM=[/tex], 那么 [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是不可约多项式.
- 1
设[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex]是[tex=1.786x1.357]2pFrMmryE2cRTmNCb4YNBA==[/tex]中一个次数大于零的多项式。如果对于任意 [tex=1.857x1.357]sBGRsVJ0Y3fPPi7d5ztPoA==[/tex],[tex=4.286x1.357]jLYV9HW9NT4nQKbR9D09eg==[/tex],只要[tex=6.357x1.357]+3zmuKty1AhSMDB3tNdbXwLWbeRaQOHanvZaiQpB2D4=[/tex],就有[tex=4.571x1.357]NaXhQuud9whTIdEia7cAy145H6cmmDHeiC85YWZqPkg=[/tex]或 [tex=4.571x1.357]BwAlbRF2LBhYPmFhNaI6JQ==[/tex],那么[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex]不可约。
- 2
若 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是次数大于零的多项式且 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 可以整除 [tex=6.357x1.357]pGmCxVYMeXbY0RBdFv1lOoYMiK8I0KiEOR7VpOaifh0=[/tex], 求 证: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的根只能是 0 或 1 的某个方根.
- 3
设[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]是数域,证明:在[tex=2.0x1.357]s5rkuaa09tHVOqNEBnxxWg==[/tex]中,若不可约多项式[tex=1.857x1.357]QF8vxZyGYgv0Fua83iwDhg==[/tex]是[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的导数[tex=2.214x1.429]fse1lYAH4YL0Hqjwwm8Q7A==[/tex]的[tex=1.857x1.143]ZsB97Gn905OnGGQYNL3gPQ==[/tex]重因式[tex=3.143x1.357]ns+Gfd/sDiHETPztD2JxLQ==[/tex],并且[tex=1.857x1.357]QF8vxZyGYgv0Fua83iwDhg==[/tex]是[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的因式,则[tex=1.857x1.357]QF8vxZyGYgv0Fua83iwDhg==[/tex]是[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]重因式。
- 4
设 [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是数域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上的多项式且次数大于 0, 则 [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 在 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上不可约的充要条件是: 对 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上任意适合 [tex=6.357x1.357]+3zmuKty1AhSMDB3tNdbXxLJRZTFKVq4xUmyZwpiyJg=[/tex] 的多项式 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex], 或者 [tex=4.571x1.357]NaXhQuud9whTIdEia7cAy145H6cmmDHeiC85YWZqPkg=[/tex], 或者 [tex=4.286x1.357]Bjm/GfOl5UoUE3/6/N5Bew62HKPUKuqC0HS8DG8f9D4=[/tex]