f(x)(系数为an…a0)是一个次数n>0的本原多项式,q/p是有理根,其中(p,q)=1,那么p,q满足什么结论成立?
A: p|an且q|an
B: p|an且q|a0
C: p|a0且q|a1
D: pq|an
A: p|an且q|an
B: p|an且q|a0
C: p|a0且q|a1
D: pq|an
举一反三
- f(x)(系数为an...a0)是一个次数n>0的本原多项式,q/p是有理根,其中(p,q)=1,那么p,q满足()。 A: p|an且q|a0 B: p|a0且q|a1 C: pq|an D: p|an且q|an
- f(x)(系数为an…a0)是一个次数n>0的本原多项式,q/p是有理根,其中(p,q)=1,那么p,q满足
- p → q为假当且仅当( ) A: p=0,q=0 B: p=0,q=1 C: p=1,q=0 D: p=1,q=1
- f(x)(系数为an…a0)是一个次数n>0的本原多项式,q/p是有理根,那么可以得到f(x)=(px-q)g(x)成立,那么g(x)是什么多项式?
- pq为假的情况是: A: p=0,q=1 B: p=0,q=0 C: p=1,q=0 D: p=1,q=1