设f(x)为连续函数,且f(x)=x^3+3xf[从0到1]f(x)dx,则f(x)=
举一反三
- 设f(x)为连续函数,且满足设f(x)=x+∫(0,1)xf(x)dx,求f(x)
- 设函数f(x)在对称区间【-a,a】上连续,证明∫(-a,a)f(x)dx=∫(0,a)[f(x)+f(-x)]dx
- 设f(x)=(1/(1+x^2))+x^3∫(0到1)f(x)dx,求∫(0到1)f(x)dx
- 设f(x)连续,且∫01[f(x)+xf(xt)]dt=1,则f(x)=__________.
- 下列命题 ①设∫f(x)dx=F(x)+C,则对任意函数g(x),有∫f[g(x)]dx=F[g(x)]+C ②设函数f(x)在某区间上连续、可导,且f’(x)≠0.又f-1(x)是其反函数,且∫f(x)dx=F(x)+C,则 ∫f-1(x)dx=xf-1(x)-F[f-1(x)]+C ③设∫f(x)dx=F(x)+C,x∈(-∞,+∞),常数a≠0,则∫f(ax)dx=F(ax)+C. ④设∫f(x)dx=F(x)+C,x∈(-∞,+∞),则 中正确的是 A: ①、③. B: ①、④. C: ②、③. D: ②、④.